Refine Your Search

Topic

Search Results

Journal Article

Introducing the Modified Tire Power Loss and Resistant Force Regarding Longitudinal Slip

2018-04-18
Abstract Investigation of vehicle resistant forces and power losses is of crucial importance owing to current state of energy consumption in transport sector. Meanwhile, considerable portion of resistant forces in a ground vehicle is traced back to tires. Pneumatic tires are known to be a source of energy dissipation as a consequence of their viscoelastic nature. The current study aims to provide a modification to tire resistance by considering the power loss in a tire due to longitudinal slip. The modified tire resistance is comprised of rolling resistance and a newly introduced resistance caused by tire slip, called slip resistance. The physical model is chosen for parameters sensitivity study since the tractive force is described in this model via tangible physical parameters, e.g. tire tangential stiffness, coefficient of friction, and contact patch length.
Journal Article

Multi-Chamber Tire Concept for Low Rolling-Resistance

2019-04-08
Abstract Rolling-resistance is leading the direction of numerous tire developments due to its significant effect on fuel consumption and CO2 emissions considering the vehicles in use globally. Many attempts were made to reduce rolling-resistance in vehicles, but with no or limited success due to tire complexity and trade-offs. This article investigates the concept of multiple chambers inside the tire as a potential alternative solution for reducing rolling-resistance. To accomplish that, novel multi-chamber designs were introduced and numerically simulated through finite-element (FE) modeling. The FE models were compared against a standard design as the baseline. The influences on rolling-resistance, grip, cornering, and mechanical comfort were studied. The multi-chambers tire model reduced rolling-resistance considerably with acceptable trade-offs. Independent air volumes isolating tread from sidewalls would maintain tire’s profile effectively.
Journal Article

U.S. Light-Duty Vehicle Air Conditioning Fuel Use and Impact of Solar/Thermal Control Technologies

2018-12-11
Abstract To reduce fuel consumption and carbon dioxide (CO2) emissions from mobile air conditioning (A/C) systems, “U.S. Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards” identified solar/thermal technologies such as solar control glazings, solar reflective paint, and active and passive cabin ventilation in an off-cycle credit menu. National Renewable Energy Laboratory (NREL) researchers developed a sophisticated analysis process to calculate U.S. light-duty A/C fuel use that was used to assess the impact of these technologies, leveraging thermal and vehicle simulation analysis tools developed under previous U.S. Department of Energy projects. Representative U.S. light-duty driving behaviors and weighting factors including time-of-day of travel, trip duration, and time between trips were characterized and integrated into the analysis.
Journal Article

Influence of Intelligent Active Suspension System Controller Design Techniques on Vehicle Braking Characteristics

2018-12-04
Abstract This article presents a comprehensive investigation for the interaction between vehicle ride vibration control and braking control using two degrees of freedom (2DOF) quarter vehicle model. A typical limited bandwidth active suspension system with nonlinear spring and damping characteristics of practical hydraulic and pneumatic components is controlled to regulate both suspension and tire forces and therefore provide the optimum ride comfort and braking performance of an anti-lock brake system (ABS). In order to design a suitable controller for this nonlinear integrated system, various control techniques are followed including state feedback tuned using Linear Quadratic Regulator (LQR), state feedback tuned using Genetic Algorithm (GA), Proportional Integrated (PI) tuned genetically, and Fuzzy Logic Control (FLC). The ABS control system is designed to limit skid ratio below threshold of 15%.
Journal Article

Nonlinear Iterative Optimization Process for Multichannel Remote Parameter Control

2019-10-14
Abstract In this article, compared with traditional Remote Parameter Control (RPC), the iterative process is improved based on linear transfer function (TF) estimation of the nonlinear dynamic system. In the improved RPC, the iteration coefficient is designed according to the convergence condition of the nonlinear iterative process, so that the convergence level, convergence speed, and iteration stability could be improved. The difference between the traditional and the improved RPC iterative process is discussed, the RPC iterative process of the nonlinear system is analyzed, and channel decoupling for Multi-Input Multi-Output (MIMO) system based on eigen-decomposition of the system TF and linear TF estimation is introduced. It assumes that the eigenvector matrix of the system TF remains the same, and the linear TF in the iterative process is estimated and updated, which is used for iterative calculation.
Journal Article

Application of Optimal Control Method to Path Tracking Problem of Vehicle

2019-08-26
Abstract Path tracking is an essential stage for vehicle safety control. It is more newsworthy than ever in the automotive context and especially for autonomous vehicle. The study proposes an optimal control method for path tracking problem in inverse vehicle handling dynamics. The proposed method generates an expected trajectory which guarantees minimum clearance to the prescribed path by identifying the optimal steering torque input. Based on this purpose, the path tracking problem, which is treated as an optimal control problem, is then solved by local collocation method and mesh refinement. Finally, a real vehicle test is executed to verify the rationality of the proposed model and methodology. The results show that using control variables as a mesh refinement function can capture the dramatic changes in state variables, and the efficiency improvement is more significant as the number of the grid points increases.
Journal Article

Development of a Standard Testing Method for Vehicle Cabin Air Quality Index

2019-05-20
Abstract Vehicle cabin air quality depends on various parameters such as number of passengers, fan speed, and vehicle speed. In addition to controlling the temperature inside the vehicle, HVAC control system has evolved to improve cabin air quality as well. However, there is no standard test method to ensure reliable and repeatable comparison among different cars. The current study defined Cabin Air Quality Index (CAQI) and proposed a test method to determine CAQI. CAQIparticles showed dependence on the choice of metrics among particle number (PN), particle surface area (PS), and particle mass (PM). CAQIparticles is less than 1 while CAQICO2 is larger than 1. The proposed test method is promising but needs further improvement for smaller coefficient of variations (COVs).
Journal Article

Development of a Catalytic Converter Cool-Down Model to Investigate Intermittent Engine Operation in HEVs

2018-10-29
Abstract Catalytic converters, a primary component in most automotive emissions control systems, do not function well until they are heated substantially above ambient temperature. As the primary energy for catalyst heating comes from engine exhaust gases, plug-in hybrid electric vehicles (PHEVs) that have the potential for short and infrequent use of their onboard engine may have limited energy available for catalytic converter heating. This article presents a comparison of multiple hybrid supervisory control strategies to determine the ability to avoid engine cold starts during a blended charge-depleting propulsion mode. Full vehicle and catalytic converter simulations are performed in parallel with engine dynamometer testing in order to examine catalyst temperature variations during the course of the US06 City drive cycle. Emissions and energy consumption (E&EC) calculations are also performed to determine the effective number of engine starts during the drive cycle.
Journal Article

Model Predictive Control of an Automotive Driveline for Optimal Torque Delivery with Minimal Oscillations during Torque Converter Slipping Conditions

2021-04-30
Abstract During certain driving scenarios, low-speed engine vibrations get propagated to the driveline and affect the drivability of a vehicle. To reduce the impact of these vibrations, a locked torque converter lockup clutch (TCC) is allowed to temporarily slip to increase the damping in the driveline. However, the initial slow dynamics of the fluid path of the torque converter cause the vehicle to feel sluggish. In this article, we design a model predictive controller (MPC) that optimally controls the torque request from the actuator (i.e., engine or e-motor) and the lockup clutch capacity for reducing this sluggishness. The study is conducted for a light-duty vehicle and uses an experimentally validated, detailed full-order model (FOM) for developing and validating a computationally efficient, reduced-order driveline model (ROM).
Journal Article

Analysis of Evaporative and Exhaust-Related On-Board Diagnostic (OBD) Readiness Monitors and DTCs Using I/M and Roadside Data

2018-03-01
Abstract Under contract to the EPA, Eastern Research Group analyzed light-duty vehicle OBD monitor readiness and diagnostic trouble codes (DTCs) using inspection and maintenance (I/M) data from four states. Results from roadside pullover emissions and OBD tests were also compared with same-vehicle I/M OBD results from one of the states. Analysis focused on the evaporative emissions control (evap) system, the catalytic converter (catalyst), the exhaust gas recirculation (EGR) system and the oxygen sensor and oxygen sensor heater (O2 system). Evap and catalyst monitors had similar overall readiness rates (90% to 95%), while the EGR and O2 systems had higher readiness rates (95% to 98%). Approximately 0.7% to 2.5% of inspection cycles with a “ready” evap monitor had at least one stored evap DTC, but DTC rates were under 1% for the catalyst and EGR systems, and under 1.1% for the O2 system, in the states with enforced OBD programs.
Journal Article

Vehicle State Estimation Based on Unscented Kalman Filtering and a Genetic Algorithm

2020-09-22
Abstract A critical component of vehicle dynamic control systems is the accurate and real-time knowledge of the vehicle’s key states and parameters when running on the road. Such knowledge is also essential for vehicle closed-loop feedback control. Vehicle state and parameter estimation has gradually become an important way to soft-sense some variables that are difficult to measure directly using general sensors. In this work, a seven degrees-of-freedom (7-DOF) nonlinear vehicle dynamics model is established, where consideration of the Magic formula tire model allows us to estimate several vehicle key states using a hybrid algorithm containing an unscented Kalman filter (UKF) and a genetic algorithm (GA). An estimator based on the hybrid algorithm is compared with an estimator based on just a UKF. The results show that the proposed estimator has higher accuracy and fewer computation requirements than the UKF estimator.
Journal Article

Computationally Analyzing the Impact of Spherical Depressions on the Sides of Hatchback Cars

2021-01-19
Abstract Fuel consumption is at an all-time high, with crude oil set to get depleted in the next two decades. Drag force is one of the major components responsible for decreasing mileage and thus increasing fuel consumption in vehicles. Using passive modifications such as spherical depressions on the body surface, aerodynamic drag experienced by passenger vehicles can be significantly reduced. Spherical depressions are designed to delay flow separation, following which the wake size is reduced, resulting in a decrease in drag force. In this study, computer-aided design (CAD) models of generalized lightweight vehicles are made with dimples at the sides of the car, having a diameter of 60 mm and a center-to-center distance of 90 mm. Several models are created having depression aspect ratios (ARs) of 2, 4, 6, and 8, and each model is simulated to velocities of 22 m/s, 24 m/s, 26 m/s, 28 m/s, and 30 m/s.
Journal Article

A Novel Approach to Energy Management Strategy for Hybrid Electric Vehicles

2021-02-25
Abstract The principal issue in choosing an energy management strategy (EMS) for hybrid electric vehicles (HEVs) has been the way of determining the optimal share of electric energy in hybrid drive. In this article, a novel EMS is proposed that, along with maximum engine efficiency in the hybrid drive, can optimize the share of battery energy for the maximum efficiency of vehicle power train expanded with an imaginary power plant that, by delivering the electric energy to a grid, feeds the vehicle battery. It is proved that the expanded power train efficiency has the local maximum for a wide range of wheel power demand. The relation between the wheel power demand in hybrid drive, the share of battery energy, and the maximum efficiency of the expanded power train is conducted offline. Downloaded to the onboard control system, it enables the operation with the instantaneously optimal share of battery energy and the control system to operate with the low computational load.
Journal Article

1D Numerical and Experimental Investigations of an Ultralean Pre-Chamber Engine

2019-11-19
Abstract In recent years, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations. With this solution, in fact, it is possible to simultaneously reduce NOx raw emissions and fuel consumption due to decreased heat losses, higher thermodynamic efficiency, and enhanced knock resistance. However, the real applicability of this technique is strongly limited by the increase in cyclic variation and the occurrence of misfire, which are typical for the combustion of homogeneous lean air/fuel mixtures. The employment of a Pre-Chamber (PC), in which the combustion begins before proceeding in the main combustion chamber, has already shown the capability of significantly extending the lean-burn limit. In this work, the potential of an ultralean PC SI engine for a decisive improvement of the thermal efficiency is presented by means of numerical and experimental analyses.
Journal Article

Optimization of Intake Port and Pentroof Angle for Simultaneous Reduction of Fuel Consumption and Exhaust Emissions in a Gasoline Direct Injection Engine

2020-02-04
Abstract This article aims to identify the best combination of intake port angle (IPA) and cylinder head pentroof angle (PA) of a gasoline direct injection (GDI) engine to achieve a simultaneous reduction in the fuel consumption and the exhaust emissions using computational fluid dynamics (CFD) and optimization techniques. The present study is carried out on a single-cylinder, four-stroke GDI engine. The design space is bound by the range of the IPA (35°, 80°) and the PA (5°, 20°). The initial data set consists of 80 design points, which are generated using the uniform Latin hypercube (ULH) algorithm. CFD simulations were carried out at all the points in the initial data set using CONVERGE at engine speed of 2,000 rev/min and the overall equivalence ratio of 0.7 ± 0.05.
Journal Article

An Improved Physics-Based Combustion Modeling Approach for Control of Direct Injection Diesel Engines

2020-07-01
Abstract Cycle-by-cycle combustion prediction in real time during engine operation can serve as a vital input for operating at optimal performance conditions and for emission control. In this work, a real-time capable physics-based combustion model has been proposed for the prediction of the heat release rate in a direct injection diesel engine. The model extends the approaches proposed earlier in the literature by considering spray dynamics such as spray penetration and Sauter mean diameter in order to calculate the mass of evaporated fuel from the spray. Wall impingement of the liquid spray is predicted by considering the liquid length based on the prevailing in-cylinder conditions. These effects are considered even after the hydraulic end of injection till the last droplet of fuel impinges on the combustion chamber wall. The fuel evaporated from the wall film and its contribution to the kinetic energy of the charge are also considered.
Journal Article

Effect of Exhaust Gas Recirculation and Intake Air E-Boosting on Gasoline Compression Ignition Combustion

2020-04-16
Abstract This experimental study aims to evaluate the engine performance and emissions when exhaust gas recirculation (EGR) and e-boosting are used in a gasoline compression ignition (GCI) engine operating at 2000 rpm and 800-900 kPa indicated mean effective pressure (IMEP) conditions. In an automotive size common-rail diesel engine architecture, a partially premixed charge-based GCI combustion was realized implementing triple injections with a split ratio of 50%, 10%, and 40% and injection timings of 170, 40, and 9-6 crank angle degrees (°CA) before top dead center (bTDC). The previous tests performed in the same engine suggested this injection strategy could achieve further nitrogen oxides (NOx) reduction if EGR is utilized with the help of intake air boosting to compensate for the loss in power output and engine efficiency. In the present study, the GCI engine is set up with a conventional EGR system and a supercharger driven by an electric motor (or an e-booster).
Journal Article

Model Following Damping Force Control for Vehicle Body Motion during Transient Cornering

2022-08-16
Abstract The aim of this study is to achieve the target transient posture of a vehicle according to the user’s steering operation. The target behavior was hypothesized to be a roll mode in the diving pitch, even during steering inputs on rough surfaces, in order to improve subjective evaluation. As a result of organizing the issues of feedforward control (FF) and feedback control (FB), we hypothesized that it would be appropriate to follow the ideal posture. The model following damping control (MFDC) was newly proposed by the authors as a solution to a control algorithm based on model-following control. The feature employs skyhook control (SH), which follows the deviation between the behavior of the reference model, which generates a target behavior with no input from the road surface, and the actual behavior of the vehicle. Numerical analyses were performed to verify the followability of the target behavior and the effect of roll damping performance.
Journal Article

Localization Requirements for Autonomous Vehicles

2019-09-24
Abstract Autonomous vehicles require precise knowledge of their position and orientation in all weather and traffic conditions for path planning, perception, control, and general safe operation. Here we derive these requirements for autonomous vehicles based on first principles. We begin with the safety integrity level, defining the allowable probability of failure per hour of operation based on desired improvements on road safety today. This draws comparisons with the localization integrity levels required in aviation and rail where similar numbers are derived at 10−8 probability of failure per hour of operation. We then define the geometry of the problem where the aim is to maintain knowledge that the vehicle is within its lane and to determine what road level it is on.
Journal Article

Simulation and Verification of the Control Strategies for Pedestrian Active Collision Avoidance System Based on Internet of Vehicles

2021-10-22
Abstract In order to further improve the active safety protection of the vehicle’s active collision avoidance system for vulnerable road users, consider the limitations of on-board sensors, a pedestrian active collision avoidance control strategy based on vehicle-to-vehicle (V2V) communication technology is proposed for the blind-spot dangerous scenario where pedestrians pass through the front of a stationary obstacle vehicle and collide with the host vehicle. Firstly, the relative position relationship model between the host vehicle and the pedestrian is established according to the pedestrian information detected by the obstacle vehicle sensor and the global positioning system (GPS) position information of the obstacle vehicle and the host vehicle so that the host vehicle can obtain the state information of the pedestrian in front of the obstacle vehicle through V2V communication.
X