Refine Your Search

Topic

Author

Search Results

Standard

Impact Testing of Automated Vehicles

2021-05-11
WIP
J3255
Dynamic impact test represent various automotive collision conditions. The impact testing recommended practice is intended to recognize the capabilities of autonomous vehicles while at the same time recognizing the vehicle fleet into which they are introduced will consist of non-autonomous vehicles for a considerable period of time. The scope of the document is to cover the range of impact conditions expected taking into account the capabilities of the vehicle and the impact testing technology now available for performance evaluation including virtual and physical testing.
Standard

Aero-Capable Ground Vehicle Impact Testing

2022-03-08
WIP
J3276
This document provides recommended practices for impact testing of ground vehicle that are also aero-capable. The scope characterizes recommended impact testing taking into account the unique design characteristics involved in aero-capable ground vehicle
Standard

Ride Index Structure and Development Methodology

2019-04-24
HISTORICAL
J2834_201904
This recommended practice defines methods for the measurement of periodic, random and transient whole-body vibration. It indicates the principal factors that combine to determine the degree to which a vibration exposure will cause discomfort. Informative appendices indicate the current state of knowledge and provide guidance on the possible effects of motion and vibration on discomfort. The frequency range considered is 0.5 Hz to 80 Hz. This recommended practice also defines the principles of preferred methods of mounting transducers for determining human exposure. This recommended practice is applicable to light passenger vehicles (e.g., passenger cars and light trucks). This recommended practice is applicable to motions transmitted to the human body as a whole through the buttocks, back and feet of a seated occupant, as well as through the hands of a driver.
Standard

Ride Index Structure and Development Methodology

2013-10-22
HISTORICAL
J2834_201310
This recommended practice defines methods for the measurement of periodic, random and transient whole-body vibration. It indicates the principal factors that combine to determine the degree to which a vibration exposure will cause discomfort. Informative appendices indicate the current state of knowledge and provide guidance on the possible effects of motion and vibration on discomfort. The frequency range considered is 0.5 Hz to 80 Hz. This recommended practice also defines the principles of preferred methods of mounting transducers for determining human exposure. This recommended practice is applicable to light passenger vehicles (e.g., passenger cars and light trucks). This recommended practice is applicable to motions transmitted to the human body as a whole through the buttocks, back and feet of a seated occupant, as well as through the hands of a driver.
Standard

Ride Index Structure and Development Methodology

2019-10-09
CURRENT
J2834_201910
This recommended practice defines methods for the measurement of periodic, random and transient whole-body vibration. It indicates the principal factors that combine to determine the degree to which a vibration exposure will cause discomfort. Informative appendices indicate the current state of knowledge and provide guidance on the possible effects of motion and vibration on discomfort. The frequency range considered is 0.5 Hz to 80 Hz. This recommended practice also defines the principles of preferred methods of mounting transducers for determining human exposure. This recommended practice is applicable to light passenger vehicles (e.g., passenger cars and light trucks). This recommended practice is applicable to motions transmitted to the human body as a whole through the buttocks, back and feet of a seated occupant, as well as through the hands of a driver.
Standard

Field Test Analysis Information Report

1999-12-14
CURRENT
J2372_199912
This SAE Information Report describes results of testing of the SAE J1746 ISP-Vehicle Standard for the communication of spatial data references between central sites and mobile vehicles on roads. Testing was performed by the Oak Ridge National Laboratory and its contractors, resulting in a document from which this Information Report has been extracted. Tests were performed by computer analysis and corroborated by field tests with a mobile vehicle.
Standard

Ergonomic Guidelines for Carts and Dollies

2015-03-13
CURRENT
USCAR41
This document describes the assessment methods and physical requirements associated with the manual handling of carts and dollies, specific to material handling systems. All possible designs and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an “off-the shelf” design, always consult the responsible Ergonomics Department. Force guidelines were primarily developed referencing the push/pull psychophysical Snook data contained in A Guide to Manual Materials Handling (second edition) by Mital, Nicholson and Ayoub (NY: Taylor & Francis, 1997). The force guidelines accommodate 75% of female capabilities and 99% of male capabilities. Factors that were included in the established guideline include: push / pull distances, vertical hand height, horizontal hand height, frequency and wheel / castor alignment and load rating. These factors were used to develop a conservative force guideline.
Standard

MANUAL CONTROLS FOR MATURE DRIVERS

1997-10-01
CURRENT
J2119_199710
Since little data exists to provide appropriate values for control parameters that would be appropriate for mature drivers, the following recommendations are of a general nature. However, they are based upon the current understanding of the aging processes that characterize mature drivers. Notwithstanding the lack of an extensive amount of data in this field, the dissemination of this SAE Information Report is considered to be appropriate and timely in light of the large increase in the number of mature drivers on the public roads, and because of the need to at least initiate efforts toward developing an information report covering this issue. It is realized that there may be cases where specific recommendations may conflict with vehicle packaging and/or operational requirements. Deviation from the recommendations may be necessary and permissible to achieve the best overall system performance.
Standard

Numbering Systems for End Mills

2019-10-09
CURRENT
J2342_201910
This SAE Recommended Practice provides a systematic method for the identification of End Mills. It is intended to assist in the cataloging and supplying of these tools. NOTE 1— Caution must be taken when assigning codes for designation to prevent specifying cutting tools that cannot be physically or economically manufactured. NOTE 2— In particular without limitation, SAE disclaims all responsibility for the accuracy or completeness of information contained within this report if the standards of this report are retrieved, combined, or used in connection with any software.
Standard

Numbering Systems for End Mills

1999-01-20
HISTORICAL
J2342_199901
This SAE Recommended Practice provides a systematic method for the identification of End Mills. It is intended to assist in the cataloging and supplying of these tools. NOTE 1— Caution must be taken when assigning codes for designation to prevent specifying cutting tools that cannot be physically or economically manufactured. NOTE 2— In particular without limitation, SAE disclaims all responsibility for the accuracy or completeness of information contained within this report if the standards of this report are retrieved, combined, or used in connection with any software.
Standard

Definition and Measurement of Torque Biasing Differentials

2008-08-26
HISTORICAL
J2817_200808
This SAE Recommended Practice covers passive torque biasing axle and center differentials used in passenger car and light truck applications. Differentials are of the bevel gear, helical gear and planetary types although other configurations are possible.
Standard

H-III5F Spine Box Update to Eliminate Noise

2022-05-09
CURRENT
J2915_202205
This SAE Information Report documents the problems with the 2002 regulated version of the spine box and defines a recommended solution to resolve the problem.
Standard

Linear Impact Procedure for Occupant Ejection Protection

2016-04-28
HISTORICAL
J2937_201604
The objective of this document is to enhance the test procedure that is used for ejection mitigation testing per the NHTSA guidelines as mentioned in the FMVSS226 Final Rule document (NHTSA Docket No. NHTSA-2011-0004). The countermeasure for occupant ejection testing is to be tested with an 18kg mass on a guided linear impactor using the featureless headform specifically designed for ejection mitigation testing. SAE does not endorse any particular countermeasure for ejection mitigation testing. However, the document reflects guidelines that should be followed to maintain consistency in the test results. Examples of currently used countermeasures include the Inflatable Curtain airbags and Laminated Glass.
Standard

Linear Impact Procedure for Occupant Ejection Protection

2021-10-08
CURRENT
J2937_202110
The objective of this document is to enhance the test procedure that is used for ejection mitigation testing per the NHTSA guidelines as mentioned in the FMVSS226 Final Rule document (NHTSA Docket No. NHTSA-2011-0004). The countermeasure for occupant ejection testing is to be tested with an 18kg mass on a guided linear impactor using the featureless headform specifically designed for ejection mitigation testing. SAE does not endorse any particular countermeasure for ejection mitigation testing. However, the document reflects guidelines that should be followed to maintain consistency in the test results. Examples of currently used countermeasures include the Inflatable Curtain airbags and Laminated Glass.
Standard

Definition of Road Vehicle Hands-Free Operation of a Person-to-Person Wireless Communication System or Device

2022-06-13
WIP
J2972
This Information Report contains a definition of road vehicle hands-free operation. This definition applies to driver inputs to a wireless communications device used for person-to-person wireless communications while driving. This report applies to both original equipment manufacturers’ and aftermarket devices. The definition does not apply to outputs, e.g., visual or haptic feedback, from a communication system or device, regardless of the modality of human-machine interface. It also does not apply to parallel or redundant manual control operating modes.
Standard

Definition of Road Vehicle Hands-Free Operation of a Person-to-Person Wireless Communication System or Device

2014-03-31
CURRENT
J2972_201403
This Information Report contains a definition of road vehicle hands-free operation. This definition applies to driver inputs to a wireless communications device used for person-to-person wireless communications while driving. This report applies to both original equipment manufacturers’ and aftermarket devices. The definition does not apply to outputs, e.g., visual or haptic feedback, from a communication system or device, regardless of the modality of human-machine interface. It also does not apply to parallel or redundant manual control operating modes.
Standard

Definition and Measurement of Power Transfer Unit Speed-Dependent Parasitic Loss

2020-12-30
CURRENT
J3039_202012
This SAE Recommended Practice covers power transfer units (PTUs) used in passenger car and sport utility vehicles to support all wheel drive (AWD) operation. PTUs are typically full-time use geared devices (see 3.1). Some PTUs have additional features such as part-time on-demand capability via electronically actuated disconnect features, and other configurations are possible.
X