Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

An Analysis of Emissions at Low Ambient Temperature from Diesel Passenger Cars Using the WLTP Test Procedure

2020-09-15
2020-01-2186
The aim of this paper is to analyse the results of regulated and unregulated emissions and carbon dioxide (CO2) emissions of passenger cars equipped with compression-ignition engines that meet the emission Euro 6d standards. Both test vehicles featured selective catalytic reduction (SCR) systems for control of oxides of nitrogen (NOx) and one vehicle also featured a passive NOx absorber (PNA). Research was performed using the current European Union exhaust emission test methods for passenger cars (Worldwide harmonized Light vehicles Test Procedures (WLTP)). Emission testing was performed on a chassis dynamometer, within a climatic chamber, at two different ambient temperatures: 23°C (i.e. Type I test) and -7°C (known as a Type VI test - currently not required for this engine type according to EU legislative requirements).
Technical Paper

Analysis of Uncertainty of the Emission Measurement of Gaseous Pollutants on Chassis Dynamometer

2007-04-16
2007-01-1324
This paper evaluates the accuracy of emission measurement of regulated gaseous pollutants from vehicles tested on chassis dynamometers. The paper describes sources of error during exhaust emissions measurement. A model of uncertainty using statistical analysis and standard uncertainty propagation techniques has been used. The model, based on individual uncertainties of different instruments used in the measurement process, as well statistical analysis evaluating uncertainties resulting from the errors introduced by the vehicle, the driver and the chassis dynamometer were all used to compute the total uncertainty of the emission measurement. The paper shows that current CVS system and analytical techniques used to measure exhaust emissions are not sufficient to meet Euro 5 standards. Either an improvement to the CVS system or the development of a new emission sampling system is a prerequisite to measure the emissions from vehicles complying with Euro 5 or SULEV.
Technical Paper

A Study of RME-Based Biodiesel Blend Influence on Performance, Reliability and Emissions from Modern Light-Duty Diesel Engines

2008-04-14
2008-01-1398
The paper evaluates the possibility of using different biodiesel blends (mixture of diesel fuel and Fatty Acid Methyl Esters) in modern Euro 4/ Euro 5 direct-injection, common-rail, turbocharged, light-duty diesel engines. The influence of different quantity of RME in biodiesel blends (B5, B20, B30) on the emission measurement of gaseous pollutants, such as: carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx), carbon dioxide (CO2) and particulate matter (PM) for light-duty-vehicle (LDV) during NEDC cycle on the chassis dynamometer as well as engine performance and reliability in engine dyno tests were analysed. All test results presented have been to standard diesel fuel. The measurement and analysis illustrate the capability of modern light-duty European diesel engines fueled with low and medium percentages of RME in biodiesel fuel with few problems.
Technical Paper

The Effect of Pure RME and Biodiesel Blends with High RME Content on Exhaust Emissions from a Light Duty Diesel Engine

2009-11-02
2009-01-2653
The use of biofuels (biodiesel and gasoline-alcohol blends) in vehicle powertrains has grown in recent years in European Union, the United States, Japan, India, Brazil and many other countries due to limited fossil fuel sources and necessary reduction of anthropogenic CO2 emissions. European car manufacturers have approved up to 5 percent of biodiesel blend in diesel fuel (B5 biodiesel blend) which meets European fuel standards EN 14214 and EN 590. The goal for research is to achieve higher biodiesel content in diesel fuel B10 and B20, without resorting to larger diesel engines and fuel feed system modernization. This paper evaluates the possibility of using higher FAME content in biodiesel blends (mixture of diesel fuel and Fatty Acid Methyl Esters) in modern Euro 4 vehicle with direct-injection, common-rail and turbocharged light-duty diesel engine with standard engine ECU calibration and standard injection equipment (not tuned for biodiesel).
Technical Paper

The Effect of Various Petrol-Ethanol Blends on Exhaust Emissions and Fuel Consumption of an Unmodified Light-Duty SI Vehicle

2011-09-11
2011-24-0177
Due to limited fossil fuel resources and a need to reduce anthropogenic CO₂ emissions, biofuel usage is increasing in multiple markets. Ethanol produced from the fermentation of biomass has been of interest as a potential partial replacement for petroleum for some time; for spark-ignition engines, bioethanol is the alternative fuel which is currently of greatest interest. At present, the international market for ethanol fuel consists of E85 fuel (with 85 percent ethanol content), as well as lower concentrations of ethanol in petrol for use in standard vehicles (E5, E10). The impact of different petrol-ethanol blends on exhaust emissions from unmodified vehicles remains under investigation. The potential for reduced exhaust emissions, improved security of fuel supply and more sustainable fuel production makes work on the production and usage of ethanol and its blends an increasingly important research topic.
Technical Paper

Measurement of the Particulate Matter Emission from Internal Combustion Engines Using an Automatic Method

2022-08-30
2022-01-1025
The aim of this study was to evaluate the accuracy and precision of measurements of an automatic weighing system used to assess the mass emission of particulate matter emitted by internal combustion engines. Thirty test cycles were carried out for cars equipped with spark-ignition and compression-ignition engines that met the Euro 4, Euro 5 and Euro 6 emission standards. Exhaust gas samples for analysis were taken according to EU 2017/1151 recommendations for driving cycles performed on AVL and Zöllner chassis dynamometers, AVL-CVS i60 LD LE and HORIBA-CVS 7400 S exhaust-gas collection systems, WLTC driving cycle according to EU 2017/1151, NEDC according to UNECE No. 83, RDE, RTS and TFL cycles, non-standard cycles of car manufacturers. The mass emission of particulate matter was measured using Teflon-coated glass filters of Pallflex® Emfab™ type TX40HI20WW, which ranged between 96 ÷ 102 mg.
X