Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Performance Test Results of a New On Board Emission Measurement System Conformed with CFR Part 1065

2007-04-16
2007-01-1326
A new on-board portable emission measurement system (PEMS) for gaseous emissions has been designed and developed to meet CFR Part 1065 requirements. The new system consists of a heated flame ionization detector (HFID) for the measurement of total hydrocarbon, a heated chemiluminescence detector (HCLD) for the measurement of NOx, and a heated non-dispersive infra-red detector (HNDIR) for the measurement of CO and CO2. The oxygen interference and relative sensitivity of several hydrocarbon components have been optimized for the HFID. The CO2 and H2O quenching effect on the HCLD have been compensated using measured CO2 and H2O concentration. The spectral overlap and molecular interaction of H2O on the HNDIR measurement has also been compensated using an independent H2O concentration measurement. The basic performance of the new on-board emission measurement system has been verified accordingly with CFR part 1065 and all of the performances have met with CFR part 1065 requirement.
Technical Paper

An Introduction to On-Board Emission Measurement as a Tool to Assess Vehicular Emissions from Regular and Alternative Fuels

2007-11-28
2007-01-2621
On-board measurement is a powerful method to assess vehicular exhaust gas emission, since it enables the acquisition of instantaneous raw emission values in real-world conditions. While the vehicle emissions are subject to traffic and environment fluctuations, on-board measurement is a fast and economical way to generate data for fleet emission inventories, for instance. It is part of the mandatory testing for heavy-duty vehicles in the USA, as regulated by the USEPA. In 2004, Petrobras (Brazilian Oil Company) first experienced on-board emission measurements while participating in an international joint project, whose objective was to obtain information regarding the light-duty vehicular gas emission contribution to pollutant levels in some of the major Latin-American cities.
Technical Paper

Evaluation of New Checks and Tests needed for Emission Measurement Equipment for 1065 Compliance

2009-11-02
2009-01-2650
Engine testing in the United States has been updated with the new centralized testing procedure in 40 CFR 1065. This regulation introduces a variety of new checks and tests required for certification testing. Upgrading existing equipment to run these tests in some cases introduces error or does not follow the spirit of the regulation. The term “good engineering practice” is used within the regulation to insure users make decisions on differences or unclear implementation. This paper addresses some of the recommended modifications and evaluates the differences in the results with and without the modifications.
Technical Paper

Verification of a Gaseous Portable Emissions Measurement System with a Laboratory System Using the Code of Federal Regulations Part 1065

2010-04-12
2010-01-1069
This paper summarizes the validation testing of the Horiba Instruments OBS-2200 gaseous portable emissions measurement system (PEMS) for in-use compliance testing per Title 40 of the Code of Federal Regulations (CFR) Part 1065.920 (Section 1065.920). The qualification process included analyzer verifications as well as engine testing on a model-year 2007 heavy-duty diesel engine produced by Volvo Powertrain. The measurements of brake-specific emissions with the OBS-2200 were compared to those of a CFR Part 1065-compliant CVS test cell over a series of not-to-exceed (NTE) events. The OBS-2200 passed all linearity verifications and analyzer checks required of PEMS. Engine test validation was achieved for all three regulated gaseous emissions (CO, NMHC, and NOX) per 40 CFR Part 1065.920(b)(5)(i), which requires a minimum of 91 percent of the measurement allowance adjusted deltas to be less than or equal to zero.
Technical Paper

Why the Limit of Detection (LOD) Value is Not an Appropriate Specification for Automotive Emissions Analyzers

2002-10-21
2002-01-2711
With the need for emission measurements of super ultra low emission vehicles (SULEV), analyzer manufacturers have been required to produce more precise and accurate analyzers. In order to compare analyzers, the customer must understand the different specifications used by the analyzer manufacturers. One specification that some manufacturers have used is the limit of detection (LOD) to indicate the reliability of the analyzer output at low concentrations. There are various methods for determining the LOD for a given analyzer. The authors will demonstrate how variations in methodology can produce different LOD values for a specific analyzer and what it means for the automotive emission analyzers. It is also demonstrated that the standard deviations of a zero signal, which is related to LOD, can be heavily influenced by data processing, such as data length in use and/or data smoothing. The LOD values obtained will be compared to the limit of quantification (LOQ) for that analyzer.
Technical Paper

Comparison of Real-World Urban Driving Route PEMS Fuel Economy with Chassis Dynamometer CVS Results

2019-04-02
2019-01-0762
The use of portable emissions measurement systems (PEMS) for testing vehicle emissions while driving on the road has been demonstrated as early as the 1980s. Many users have taken the driving route and repeated the route in a chassis cell with the same vehicle expecting identical results. Emission results can be comparable but there are many factors that need to be considered. This study compares PEMS results for a driving route repeated across seasons and traffic conditions with a single vehicle. The ambient temperature variability and traffic is shown to cause variation in emissions for any individual run. Generating a test cycle to mimic the driving route can be done in a variety of ways. The simplest is to take an individual driving run and translate the time and speed trace directly. This does not address the statistical results from numerous driving runs on the same route.
X