Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Influence of Support Materials on Durability of Palladium in Three-Way Catalyst

1998-02-23
980664
In this paper, we studied the influence of support materials on Pd in three-way catalysts for the aim of enhancing the durability of Pd, particularly CO and NOx conversion efficiencies which are usually seriously damaged after aging. Since the durability of precious metals was found to be strongly influenced by the support material chosen, it should be possible to optimize catalyst performance by finding the appropriate support. The performance of Pd three-way catalysts with different support materials (Aluminum oxide, Cerium - Zirconium Oxide, Cerium - Zirconium -Yttrium Oxide, Zirconium Oxide, or Titanium Oxide) was compared after high temperature agings under various gas conditions. To assess Pd deterioration, the crystallite size of Pd was measured with XRD and the micro surface was observed by FE-SEM. The performance of the catalysts was evaluated.
Technical Paper

Perovskite-Pd Three-Way Catalysts for Automotive Applications

1993-03-01
930251
Three-way catalysts which remove different kinds of pollutants, such as CO, THC(total hydro-carbon) and NOx, simultaneously from the automotive exhaust gas employ Rhodium(Rh) in combination with Platinum(Pt) and Palladium(Pd). Rh is the most effective for reducing NOx to N2, but Rh is the most expensive of these precious metals. The ratio of Rh to Pt applied for automobiles frequently exceeds the natural production. The gap between supply and demand of Rh sometimes causes the big price fluctuation. Accordingly, many attempts to reduce the amount of Rh loaded or to develop non-Rh three-way catalysts have been made. Although Pd catalysts are considered to be promising candidates for non-Rh automotive three-way catalysts, some performance are still inferior to Pt-Rh catalysts. We have found that an excellent three-way catalytic activity appears by compounding new Perovskite-structured oxides with Pd and auxiliary oxides.
Technical Paper

Excellent Oxygen Storage Capacity of Perovskite-PD Three way Catalysts

1995-02-01
950256
Increasingly stringent emissions controls have led to a greater emphasis on strategies designed to minimize emission during cold start. One strategy employed is that of close-coupling the catalyst to the exhaust manifold of the engine in an effort to minimize catalyst light-off time. In this configuration, the catalyst must exhibit a high degree of thermal stability. Further, since the catalyst is situated nearer to the engine, it is more liable to sense cylinder-to-cylinder variations in exhaust gas composition and thus needs to possess a wider operating window than a catalyst positioned further underbody. We have previously reported that Perovskite-Pd catalysts exhibit excellent heat resistance and have three-way catalyst activity comparable with or superior to that of Pt-Rh/ Al2O3 catalysts and Pd/Al2O3 catalysts [1]*. Durability at high temperatures and oxygen storage capacity under large air/fuel (A/F) ratio fluctuation conditions have now been tested.
Technical Paper

Durability of Three-Way Catalysts with Precious Metals Loaded on Different Location

1996-02-01
960795
It is necessary to mount a three-way catalyst at a place near the engine such as a close coupled converter or manifold converter to decrease cold-start emission. Naturally, in that case the catalyst of course is used under considerable A/F fluctuations at higher temperatures. We have developed a catalyst with excellent durability under such severe conditions. Three types of catalysts, made with different loading locations of precious metals, were evaluated using model gases. Durability was found to strongly depend on the loading location, and thus it should be possible to design an optimal catalyst for close coupled and manifold converters.
Technical Paper

Improvement in Oxygen Storage Capacity

1996-02-01
960794
Cerium oxide (Ceria) is known to have good oxygen storage capacity (OSC) and is used widely in three-way catalysts for automobiles, but it has a problem of heat stability since it is less stable than aluminium oxide (Alumina). In the present work, cerium-zirconiumyttrium (Ce-Zr-Y) oxide systems were investigated with the aim of improving the heat stability of CeO2-based oxide systems, which would result in great improvement in OSC. We found an optimum composition of Ce-Zr-Y oxide with platinum (Pt) dispersed in it at a quantity of 0.1 % in weight, which showed good OSC starting from 100°C upwards even after thermal aging at 1000°C for 2 hours under variable atmospheric conditions of rich-lean fluctuations.
Technical Paper

Oxygen Storage Capacity on Cerium Oxide - Precious Metal System

1997-02-24
970464
Cerium oxide (CeO2) is known to have good oxygen storage capacity (OSC) and is used widely in three-way catalysts for automobiles, but it has a problem of inferior heat stability. In our previous work, cerium-zirconiumyttrium (Ce Zr-Y) oxide systems were investigated with the aim of improving the heat stability of CeO2-based oxide systems, and we found an optimum composition of Ce-Zr-Y oxide with platinum (Pt) showed good OSC even after high temperature aging. In this study OSC and thermal stability of Ce-Zr-Y oxide with varying the types of precious metals were investigated to evaluate the effect of precious metals. The results show that, Palladium (Pd) and Rhodium (Rh) are also available for Ce-Zr-Y oxide with precious metal system to improve OSC after thermal aging. In particular, Rh exhibited higher improvement than others at the composition of lower Ce content.
Technical Paper

Influence of Oxygen Storage Characteristics on Automobile Emissions

1999-03-01
1999-01-1076
The catalytic performance and On-Board Diagnostics (OBD) of the manifold catalyst having high Oxygen Storage Capacity (OSC) are described in this paper. First of all, we compared the performance of three-way catalysts containing Cerium - Zirconium - Yttrium oxide with Cerium - Zirconium oxide. Three-way catalysts dispersed Pt, Rh and Pd on Cerium - Zirconium - Yttrium oxide showed excellent catalytic performance especially at cold starting and at transient states, after high temperature aging at 1050°C. The performance of these catalysts was studied using the Driving Mode Simulation Dynamometer, which was developed in-house, and oxygen storage and release responses were compared in actual gas. Then we investigated the possibility of on-board diagnostics of catalyst deactivation with high OSC in manifold and close-coupled positions, a diagnostic which is usually assumed to be difficult to attain with present conventional technology.
X