Refine Your Search

Topic

Search Results

Journal Article

Modeling the Cold Start of the Ford 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1493
Optimization of the engine cold start is critical for gasoline direct injection (GDI) engines to meet increasingly stringent emission regulations, since the emissions during the first 20 seconds of the cold start constitute more than 80% of the hydrocarbon (HC) emissions for the entire EPA FTP75 drive cycle. However, Direct Injection Spark Ignition (DISI) engine cold start optimization is very challenging due to the rapidly changing engine speed, cold thermal environment and low cranking fuel pressure. One approach to reduce HC emissions for DISI engines is to adopt retarded spark so that engines generate high heat fluxes for faster catalyst light-off during the cold idle. This approach typically degrades the engine combustion stability and presents additional challenges to the engine cold start. This paper describes a CFD modeling based approach to address these challenges for the Ford 3.5L V6 EcoBoost engine cold start.
Journal Article

Applications of CFD Modeling in GDI Engine Piston Optimization

2009-06-15
2009-01-1936
This paper describes a CFD modeling based approach to address design challenges in GDI (gasoline direct injection) engine combustion system development. A Ford in-house developed CFD code MESIM (Multi-dimensional Engine Simulation) was applied to the study. Gasoline fuel is multi-component in nature and behaves very differently from the single component fuel representation under various operating conditions. A multi-component fuel model has been developed and is incorporated in MESIM code. To apply the model in engine simulations, a multi-component fuel recipe that represents the vaporization characteristics of gasoline is also developed using a numerical model that simulates the ASTM D86 fuel distillation experimental procedure. The effect of the multi-component model on the fuel air mixture preparations under different engine conditions is investigated. The modeling approach is applied to guide the GDI engine piston designs.
Technical Paper

Condensation of Fuel on Combustion Chamber Surfaces as a Mechanism for Increased HC Emissions from SI Engines During Cold Start

1997-10-01
972884
Condensation of fuel vapor on the cold surfaces within the combustion chamber is investigated as a possible mechanism for increased HC emissions from SI engines during cold start. A one-dimensional, transient, mass diffusion analysis is used to examine the condensation of single-species fuels on the surfaces of the combustion chamber as the pressure within the cylinder rises during compression and combustion, and re-vaporization during expansion, blowdown, and exhaust. The effects of wall temperature, fuel volatility, and engine load and speed on this mechanism are also discussed. This analysis shows that low-volatility fuel components can condense on the surfaces of the combustion chamber when the surface temperatures are sufficiently low. This condensed fuel may re-vaporize during the power and exhaust strokes, or it may remain in the combustion chamber until surface temperatures rise, perhaps tens of seconds later.
Technical Paper

Improved Passage Design for a Spark Plug Mounted Pressure Transducer

2007-04-16
2007-01-0652
Combustion chamber pressure measurement in engines via a passage is an old technique that is still widely used in engine research. This paper presents improved passage designs for an off-set electrode spark plug designed to accept a pressure transducer. The spark plug studied was the Champion model 304-063A. Two acoustic models were developed to compute the resonance characteristics. The new designs have a resonance frequency in a range higher than the fundamental frequency expected from knock so that the signal can be lowpass filtered to remove the resonance and not interfere with pressure signal components associated with combustion phenomena. Engine experiments verified the spark plug resonance behavior. For the baseline engine operating condition approximately 50 of 100 cycles had visible passage resonance in the measured pressure traces, at an average frequency of 8.03 kHz.
Technical Paper

Direct Measurement of Powertrain Component Efficiencies for a Light-Duty Vehicle with a CVT Operating Over a Driving Cycle

2003-10-27
2003-01-3202
In order to determine the factors that affect fuel economy quantitatively, the power flows through the major powertrain components were measured during operation over transient cycles. The fuel consumption rate and torque and speed of the engine output and axle shafts were measured to assess the power flows in a vehicle with a CVT. The measured power flows were converted to energy loss for each component to get the efficiency. Tests were done at Phase 1 and Phase 3 of the FTP and for two different CVT shift modes. The measured energy distributions were compared with those from the ADVISOR simulation and to results from the PNGV study. For both the Hot 505 and the Cold 505, and for both shift modes, the major powertrain loss occurs in the engine, including or excluding standby losses. However, the efficiency of the drivetrain/transmission is important because it influences the efficiency of the engine.
Technical Paper

Refinement of a Dedicated E85 1999 Silverado with Emphasis on Cold Start and Cold Drivability

2001-03-05
2001-01-0679
The University of Texas 2000 Ethanol Vehicle Challenge team remains focused on cold start, cold drivability, fuel economy, and emissions reduction for our 2000 Ethanol Vehicle Challenge entry. We used the stock PCM for all control functions except control of an innovative cold-start system our team designed. The primary modifications for improved emissions control involved ceramic coating of the exhaust manifolds, use of close-coupled ethanol-specific catalysts, use of a moddified version of the California Emissions Calibrated PCM, and our cold-start system that eliminates the need to overfuel the engine at the beginning of the FTP. Additionally, we eliminated EGR at high load to improve power density. Major modifications, such as increasing the compression ratio or pressure boosting, were eliminated from consideration due to cost, complexity, reliability, or emissions penalties.
Technical Paper

The Effects of Fuel Volatility and Structure on HC Emissions from Piston Wetting in DISI Engines

2001-03-05
2001-01-1205
Piston wetting can be isolated from the other sources of HC emissions from DISI engines by operating the engine predominantly on a gaseous fuel and using an injector probe to impact a small amount of liquid fuel on the piston top. This results in a marked increase in HC emissions. All of our prior tests with the injector probe used California Phase 2 reformulated gasoline as the liquid fuel. In the present study, a variety of pure liquid hydrocarbon fuels are used to examine the influence of fuel volatility and structure. Additionally, the exhaust hydrocarbons are speciated to differentiate between the emissions resulting from the gaseous fuel and those resulting from the liquid fuel. It is shown that the HC emissions correspond to the Leidenfrost effect: fuels with very low boiling points yield high HCs and those with a boiling point near or above the piston temperature produce much lower HCs.
Technical Paper

Liquid Film Evaporation Off the Piston of a Direct Injection Gasoline Engine

2001-03-05
2001-01-1204
An optical access engine was used to image the liquid film evaporation off the piston of a simulated direct injected gasoline engine. A directional injector probe was used to inject liquid fuel (gasoline, i-octane and n-pentane) directly onto the piston of an engine primarily fueled on propane. The engine was run at idle conditions (750 RPM and closed throttle) and at the Ford World Wide Mapping Point (1500 RPM and 262 kPa BMEP). Mie scattering images show the liquid exiting the injector probe as a stream and directly impacting the piston top. Schlieren imaging was used to show the fuel vaporizing off the piston top late in the expansion stroke and during the exhaust stroke. Previous emissions tests showed that the presence of liquid fuel on in-cylinder surfaces increases engine-out hydrocarbon emissions.
Technical Paper

Effects of Fuel Volatility, Load, and Speed on HC Emissions Due to Piston Wetting

2001-05-07
2001-01-2024
Piston wetting can be isolated from the other sources of HC emissions from DISI engines by operating the engine predominantly on a gaseous fuel and using an injector probe to impact a small amount of liquid fuel on the piston top. This results in a marked increase in HC emissions. In a previous study, we used a variety of pure liquid hydrocarbon fuels to examine the influence of fuel volatility and structure on the HC emissions due to piston wetting. It was shown that the HC emissions correspond to the Leidenfrost effect: fuels with very low boiling points yield high HCs and those with a boiling point near or above the piston temperature produce much lower HCs. All of these prior tests of fuel effects were performed at a single operating condition: the Ford World Wide Mapping Point (WWMP). In the present study, the effects of load and engine speed are examined.
Technical Paper

Effects of In-cylinder Flow on Fuel Concentration at the Spark Plug, Engine Performance and Emissions in a DISI Engine

2002-03-04
2002-01-0831
A fiber optic instrumented spark plug was used to make time-resolved measurements of the fuel vapor concentration history near the spark gap in a four-valve DISI engine. Four different bulk flow were investigated. Several early and late injection timings were examined. The fuel concentration at the spark gap was correlated with IMEP. Emissions of CO, HCs, and NOx were related to the type of bulk flow. For both early and late injection the CoVs of fuel concentration were generally lowest for the weakest bulk flow which resulted in a stable stratification. Strong bulk flows convected the inhomogeneities through the measurement area near the spark plug resulting in both large intracycle and cycle-to-cycle variation in equivalence ratio at the time of ignition.
Technical Paper

Effects of Piston Wetting on Size and Mass of Particulate Matter Emissions in a DISI Engine

2002-03-04
2002-01-1140
We have examined the influence of piston wetting on the size distribution and mass of particulate matter (PM) emissions in a SI engine using several different fuels. Piston wetting was isolated as a source of PM emissions by injecting known amounts of liquid fuel onto the piston top using an injector probe. The engine was run predominantly on propane with approximately 10% of the fuel injected as liquid onto the piston. The liquid fuels were chosen to examine the effects of fuel volatility and molecular structure on the PM emissions. A nephelometer was used to characterize the PM emissions. Mass measurements from the nephelometer were compared with gravimetric filter measurements, and particulate size measurements were compared with scanning electron microscope (SEM) photos of particulates captured on filters. The engine was run at 1500 rpm at the Ford world-wide mapping point with an overall equivalence ratio of 0.9.
Technical Paper

Three-Dimensional Numerical Simulation of Flame Propagation in Spark Ignition Engines

1993-10-01
932713
Multi-dimensional numerical simulation of the combustion process in spark ignition engines were performed using the Coherent Flame Model (CFM) which is based on the flamelet assumption. The CFM uses a balance equation for the flame surface area to simulate flame surface advection, diffusion, production and destruction in a turbulent reacting flow. There are two model constants in CFM, one associated with the modeling of flame surface production and the other with the modeling of flame surface destruction. Previous experimental results on two test engines charged with propane-air mixtures were used to compare with the computations for different engine speeds, loads, equivalence ratios and spark plug locations. Predicted engine cylinder pressure histories agree well with the experimental results for various operating conditions after the model constants were calibrated against a reference operating condition.
Technical Paper

Initial Study of Railplugs as an Aid for Cold Starting of Diesels

1994-02-01
940108
The results of continuing investigations of a new type of ignitor, the railplug, are reported. Previous studies have shown that railplugs can produce a high velocity jet of plasma. Additionally, railplugs have the potential of assuring ignition under adverse conditions, such as cold start of an IDI diesel engine, because the railplug plasma can force ignition in the combustion chamber rather than relying on autoignition under cold start conditions. In this paper, engine data are presented to demonstrate the improved cold starting capability obtainable with railplugs. Data acquired using a railplug are compared to results obtained using no assist and using glow plugs. The engine used for this investigation will not start without glow plugs (or some starting aid) at temperatures below O°C, and the manufacturer's specification of the cold start limit for this engine using glow plugs is -24°C. Railplugs are able to initiate combustion at -29°C in one to two seconds with no preheating.
Technical Paper

In-Cylinder Fuel Transport During the First Cranking Cycles in a Port Injected 4-Valve Engine

1997-02-24
970043
Fuel transport was visualized within the cylinder of a port injected four-valve SI engine having a transparent cylinder liner. Measurements were made while motoring at 250 rpm to simulate cranking conditions prior to the first firing cycle, and at 750 rpm to examine the effects of engine speed. A production GM Quad-4 cylinder head was used, and the stock single-jet port fuel injector was used to inject indolene. A digital camera was used to capture back-lighted images of cylinder wall wetting for open and closed intake valve injection. In addition, two-dimensional planar imaging of Mie scattering from the indolene fuel droplets was used to characterize the fuel droplet distribution as a function of crank angle for open and closed intake valve injection. LDV was used to measure the droplet and air velocities near the intake valves during fuel induction. It was found that with open-valve injection a large fraction of the fuel impinged on the cylinder wall opposite the intake valves.
Technical Paper

Improving Heavy-Duty Engine Efficiency and Durability: The Rotating Liner Engine

2005-04-11
2005-01-1653
The Rotating Linear Engine (RLE) derives improved fuel efficiency and decreased maintenance costs via a unique lubrication design, which decreases piston assembly friction and the associated wear for heavy-duty natural gas and diesel engines. The piston ring friction exhibited on current engines accounts for 1% of total US energy consumption. The RLE is expected to reduce this friction by 50-70%, an expectation supported by hot motoring and tear-down tests on the UT single cylinder RLE prototype. Current engines have stationary liners where the oil film thins near the ends of the stroke, resulting in metal-to-metal contact. This metal-to-metal contact is the major source of both engine friction and wear, especially at high load. The RLE maintains an oil film between the piston rings and liner throughout the piston stroke due to liner rotation. This assumption has also been confirmed by recent testing of the single cylinder RLE prototype.
Technical Paper

Engine Friction Reduction Through Liner Rotation

2005-04-11
2005-01-1652
Cylinder liner rotation (Rotating Liner Engine, RLE) is a new concept for reducing piston assembly friction in the internal combustion engine. The purpose of the RLE is to reduce or eliminate the occurrence of boundary and mixed lubrication friction in the piston assembly (specifically, the rings and skirt). This paper reports the results of experiments to quantify the potential of the RLE. A 2.3 L GM Quad 4 SI engine was converted to single cylinder operation and modified for cylinder liner rotation. To allow examination of the effects of liner rotational speed, the rotating liner is driven by an electric motor. A torque cell in the motor output shaft is used to measure the torque required to rotate the liner. The hot motoring method was used to compare the friction loss between the baseline engine and the rotating liner engine. Additionally, hot motoring tear-down tests were used to measure the contribution of each engine component to the total friction torque.
Technical Paper

Further Development of an On-Board Distillation System for Generating a Highly Volatile Cold-Start Fuel

2005-04-11
2005-01-0233
The On-Board Distillation System (OBDS) extracts, from gasoline, a highly volatile crank fuel that enables simultaneous reduction of start-up fuel enrichment and significant ignition timing retard during cold-starting. In a previous paper we reported reductions in catalyst light-off time of >50% and THC emissions reductions >50% over Phase I of the FTP drive cycle. The research presented herein is a further development of the OBDS concept. For this work, OBDS was improved to yield higher-quality start-up fuel. The PCM calibration was changed as well, in order to improve the response to intake manifold pressure transients. The test vehicle was tested over the 3-phase FTP, with exhaust gases speciated to determine NMOG and exhaust toxics emissions. Also, the effectiveness of OBDS at generating a suitable starting fuel from a high driveability index test gasoline was evaluated.
Technical Paper

The Effect of In-Cylinder Wall Wetting Location on the HC Emissions from SI Engines

1999-03-01
1999-01-0502
The effect of combustion chamber wall-wetting on the emissions of unburned and partially-burned hydrocarbons (HCs) from gasoline-fueled SI engines was investigated experimentally. A spark-plug mounted directional injection probe was developed to study the fate of liquid fuel which impinges on different surfaces of the combustion chamber, and to quantify its contribution to the HC emissions from direct-injected (DI) and port-fuel injected (PFI) engines. With this probe, a controlled amount of liquid fuel was deposited on a given location within the combustion chamber at a desired crank angle while the engine was operated on pre-mixed LPG. Thus, with this technique, the HC emissions due to in-cylinder wall wetting were studied independently of all other HC sources. Results from these tests show that the location where liquid fuel impinges on the combustion chamber has a very important effect on the resulting HC emissions.
Technical Paper

Effects of Swirl and Tumble on In-Cylinder Fuel Distribution in a Central Injected DISI Engine

2000-03-06
2000-01-0533
The effect of the in-cylinder bulk flow on fuel distributions in the cylinder of a motored direct-injection S.I. engine was measured. Five different bulk flows were induced through combinations of shrouded and unshrouded valves, and port deactivation: stock, high tumble, reverse tumble, swirl, and swirl/tumble. Planar Mie scattering was used to observe the fuel spray movement in the centerline plane of a transparent cylinder engine. A fiber optic instrumented spark plug was used to measure the resulting cycle-resolved equivalence ratio in the vicinity of the spark plug. The four-valve engine had the injector located on the cylinder axis; the fiber optic probe was located between the intake valves. Injection timings of 90, 180, and 270 degrees after TDC were examined. Measurements were made at 750 and 1500 rpm with certification gasoline at open throttle conditions. From the images it was found that the type and strength of the bulk flow greatly affected the spray behavior.
Technical Paper

Conversion of a 1999 Silverado to Dedicated E85 with Emphasis on Cold Start and Cold Driveability

2000-03-06
2000-01-0590
The University of Texas Ethanol Vehicle Challenge team focused upon cold start/driveability, fuel economy, and emissions reduction for our 1999 Ethanol Vehicle Challenge entry. We replaced or coated all fuel system components that were not ethanol compatible. We used the stock PCM for all control functions except control of a novel cold-start system our team designed. The primary modifications for improved emissions control involved ceramic coating of the exhaust manifolds, use of close-coupled ethanol-specific catalysts, increased EGR for the operating conditions of the five longest cruises on the FTP, and our cold-start system that eliminates the need to overfuel the engine at the beginning of the FTP. This EGR control scheme should also benefit urban fuel economy. Additionally, we eliminated EGR at high load to improve power density.
X