Refine Your Search

Topic

Search Results

Journal Article

Real Gas Effects in High-Pressure Engine Environment

2010-04-12
2010-01-0627
Real gas effects are studied during the compression stroke of a diesel engine. Several different real gas models are compared to the ideal gas law and to the experimental pressure history. Comparisons are done with both 1-D and CFD simulations, and reasons and answers are found out for the observed differences between simulations and experimental data. The engine compression ratio was measured for accurate model predictions. In addition, a 300bar extreme pressure case is also analyzed with the real gas model since an engine capable for this performance level is currently being built at the Aalto University School of Science and Technology. Real gas effects are even more important in these extreme conditions than in normal operating pressures. Finally, it is shown that the predicted pressure history during an engine compression stroke by a real gas model is more accurately predicted than by the ideal gas law.
Technical Paper

Blending Behavior of Hydrocarbon and Oxygenate Molecules to Optimize RON and MON for Modern Spark-Ignition Engines (SI)

2020-09-15
2020-01-2145
Gasoline blending is known to be complicated, because individual gasoline fractions with different octane numbers, Research Octane Number (RON) or Motor Octane Number (MON) do not always blend linearly. Instead, they may blend non-linearly, in a synergistic or antagonistic manner. Even though RON and MON are regulated properties, linear and non-linear octane blending is not a broadly understood topic. The target in the developing process of a modern SI engine is to have 100% combustion efficiency which would lead to the reduction of hydrocarbon and carbon monoxide emissions. Therefore, the properties of gasoline, especially RON and MON, need to be optimized to ensure proper ignition in the engine and prevent harmful autoignition reactions. There are hundreds of hydrocarbons in gasoline which have different octane numbers (ON). The explanations for these variations are the structural differences in hydrocarbon molecules that influence on their reactivity.
Journal Article

Characteristics of High Pressure Jets for Direct Injection Gas Engine

2013-04-08
2013-01-1619
The direct injection (DI) natural gas engine is considered as one of the promising technologies to achieve the continuing goals of the higher efficiency and reduced emissions for internal combustion engines. Shock wave phenomena can easily occur near the nozzle exit when high pressure gaseous fuel is injected directly into the engine cylinder. In the present study, high pressure gas issuing from a prototype gas injector was experimentally studied using planar laser-induced fluorescence (PLIF) technique. Acetone was selected as a fuel tracer. The effects of injection pressures on the flow structure and turbulent mixing were investigated based on a series of high resolution images. The jet macroscopic structures, such as jet penetration, cone angle and jet volume, are analyzed under different injection pressures. Results show that barrel shock waves can significantly influence the jet flow structure and turbulent mixing.
Journal Article

Large-Bore Compression-Ignition Engines: High NOx Reduction Achieved at Low Load with Hydro-Treated Vegetable Oil

2011-08-30
2011-01-1956
The objective of this paper is to analyze the performance and the combustion of a large-bore medium-speed engine running with hydro-treated vegetable oil (HVO) at low engine load. This fuel has a paraffinic chemical structure and high cetane number (CN). The main benefits are thus lower emission compared to diesel fuel and low soot values. The facility used in this study is a research engine, where the conditions before and after the machine, the valve timing and the injection parameters are fully adjustable. Several in-cylinder conditions before the combustion have been tested. The results are promising and show the benefits of HVO compared to diesel fuel. In fact, it has been possible to reduce nitrogen oxides (NOx) emission over 50% running with HVO and opportunely tuned valve timing.
Journal Article

Emission Reduction Using Hydrotreated Vegetable Oil (HVO) With Miller Timing and EGR in Diesel Combustion

2011-08-30
2011-01-1955
Several high-speed diesel engine test runs were carried out during 2010 in Aalto University using a single-cylinder research engine. The main focus was on miller cycle and exhaust gas recirculation (EGR) tests using hydrotreated vegetable oil (HVO) as fuel. But also reference tests were run using both HVO and regular EN590 diesel in normal engine configuration and running parameters. The miller tests included a sweep of three different intake valve closing timings and also a sweep with advanced start of injection. The results showed a reduction in both nitrous oxides (NOx) and smoke emissions. EGR tests showed a significant decrease in NOx emissions as was expected. The lower smoke emissions of HVO compared to EN590 enable higher EGR percentages with similar PM emission and hence bigger NOx emission reduction.
Technical Paper

Application of Synthetic Renewable Methanol to Power the Future Propulsion

2020-09-15
2020-01-2151
As CO2 emissions from traffic must be reduced and fossil-based traffic fuels need to phase out, bio-based traffic fuels alone cannot meet the future demand due to their restricted availability. Another way to support fossil phase-out is to include synthetic fuels that are produced from circular carbon sources with renewable energy. Several different fuel types have been proposed, while, methanol only requires little processing from raw materials and could be used directly or as a drop-in fuel for some of the current engine fleet. CO2 emissions arising from fuel production are significantly reduced for synthetic renewable methanol compared to the production of fossil gasoline. Methanol has numerous advantages over the currently used fossil fuels with high RON and flame speed in spark-ignition engines as well as high efficiency and low emissions in combustion ignition engines.
Technical Paper

In-Cylinder Flow Field of a Diesel Engine

2007-10-29
2007-01-4046
The flow through the valves of an engine cylinder head is very complex in nature due to very high gas velocities and strong flow separation. However, it is also the typical situation in almost every engine related flow. In order to gain better understanding of the flow features after the cylinder head, and to gain knowledge of the performance level that can be expected from CFD analysis, flow field measurements and computations were made in an engine rig. Particle image velocimetry (PIV) and paddle wheel measurements have been conducted in a static heavy-duty diesel engine rig to characterize the flow features with different valve lifts and pressure differences. These measurements were compared with CFD predictions of the same engine. The simulations were done with the standard k-ε turbulence model and with the RNG turbulence model using the Star-CD flow solver.
Technical Paper

Particle Image Velocimetry Measurements of a Diesel Spray

2008-04-14
2008-01-0942
The current study was focused on flow field measurements of diesel sprays. The global fuel spray characteristics, such as spray penetration, have also been measured. Particle Image Velocimetry (PIV) was utilized for flow field measurements and the global spray characteristics were recorded with high-speed back light photographing. The flow field was scanned to get an idea of the compatibility of PIV technique applied to dense and high velocity sprays. It is well proven that the PIV technique can be utilized at areas of low number density of droplets, but the center of the spray is way beyond the ideal PIV measurement conditions. The depth at which accurate flow field information can be gathered was paid attention to.
Technical Paper

Large-Eddy Simulation on the Effect of Droplet Size Distribution on Mixing of Passive Scalar in a Spray

2008-04-14
2008-01-0933
In this work simulation results of a round spray jet are presented using the combination of Large-Eddy Simulation (LES) and Lagrangian Particle Tracking (LPT). The simulation setup serves as a synthetic model of non-atomizing spray particles taken from the Rosin-Rammler size distribution that enter a chamber filled with gas through an inlet hole with diameter D. At the inlet gas velocity and droplet velocities are specified in addition to the initial size distribution of droplets. The Reynolds number as referred to the gas inflow velocity and jet diameter is Re=10000. The setup is advantageous for understanding the details of diesel sprays since it avoids near-nozzle spray modeling and thereof the corresponding error which is especially important in LES. Here, the implicit LES is applied so that the compressible Navier-Stokes equations are solved directly with a numerical algorithm in a fine mesh without a subgrid scale model.
Technical Paper

Conjugate Heat Transfer in CI Engine CFD Simulations

2008-04-14
2008-01-0973
The development of new high power diesel engines is continually going for increased mean effective pressures and consequently increased thermal loads on combustion chamber walls close to the limits of endurance. Therefore accurate CFD simulation of conjugate heat transfer on the walls becomes a very important part of the development. In this study the heat transfer and temperature on piston surface was studied using conjugate heat transfer model along with a variety of near wall treatments for turbulence. New wall functions that account for variable density were implemented and tested against standard wall functions and against the hybrid near wall treatment readily available in a CFD software Star-CD.
Technical Paper

NOx Reduction in a Medium-Speed Single-Cylinder Diesel Engine using Miller Cycle with Very Advanced Valve Timing

2009-09-13
2009-24-0112
The objective of this study is to achieve high reduction of NOx emissions in a medium-speed single-cylinder research engine. The main feature of this research engine is that the gas exchange valve timing is completely adjustable with electro-hydraulic actuators. The study is carried out at high engine load and using a very advanced Miller valve timing. Since the engine has no turbocharger, but a separate charge air system, 1-D simulations are carried out to find the engine setup, which would be close to the operating points of a real engine. The obtained NOx reduction is over 40% with no penalty in fuel consumption.
Technical Paper

Novel Two-Stroke Engine Concept, Feasibility Study

2003-10-27
2003-01-3211
A novel two-stroke engine concept is introduced. The cylinder scavenging takes place during the upward motion of the piston. The gas exchange valves are similar to typical four-stroke valves, but the intake valves are smaller and lighter. The scavenging air pressure is remarkably higher than in present-day engines. The high scavenging air pressure is produced by an external compressor. The two-stroke operation is achieved without the drawbacks of port scavenged engines. Moreover, the combustion circumstances, charge pressure and temperature and internal exhaust gas re-circulation (EGR) can be controlled by using valve timings. There is good potential for a substantial reduction in NOx emissions through the use of adjustable compression pressure and temperature and by using the adjustable amount of exhaust gas re-circulation.
Technical Paper

Comparing Single-Step and Multi-Step Chemistry Using The Laminar and Turbulent Characteristic Time Combustion Model In Two Diesel Engines

2002-05-06
2002-01-1749
Three-dimensional diesel engine combustion simulations with single-step chemistry have been compared with two-step and three-step chemistry by means of the Laminar and Turbulent Characteristic Time Combustion model using the Star-CD program. The second reaction describes the oxidation of CO and the third reaction describes the combustion of H2. The comparisons have been performed for two heavy-duty diesel engines. The two-step chemistry was investigated for a purely kinetically controlled, for a mixing limited and for a combination of kinetically and mixing limited oxidation. For the latter case, two different descriptions of the laminar reaction rates were also tested. The best agreement with the experimental cylinder pressure has been achieved with the three-step mechanism but the differences with respect to the two-step and single-step reactions were small.
Technical Paper

Simulation of Non-Evaporating Diesel Sprays and Verification with Experimental Data

2002-03-04
2002-01-0946
Non-evaporating diesel sprays have been simulated utilizing the ETAB and the WAVE atomization and breakup models and have been compared with experimental data. The experimental penetrations and widths were determined from back-lit spray images and the droplet sizes have been measured by means of a Malvern particle sizer. The model evaluation criteria include the spray penetration, the spray width and the local droplet size. The comparisons have been performed for variations of the injection pressure, the gas density and the fuel viscosity. The fuel nozzle exit velocities used in the simulations have been computed with a special code that considers the effect of in-nozzle cavitation. The simulations showed good overall agreement with experimental data. However, the capabilities of the models to predict the droplet size for different fuels could be improved.
Technical Paper

Studying Local Conditions in a Heavy-Duty Diesel Engine by Creating Phi-T Maps

2011-04-12
2011-01-0819
New measurements have been done in order to obtain information concerning the effect of EGR and a paraffinic hydrotreated fuel for the smoke and NO emissions of a heavy-duty diesel engine. Measured smoke number and NO emissions are explained using detailed chemical kinetic calculations and CFD simulations. The local conditions in the research engine are analyzed by creating equivalence ratio - temperature (Phi-T) maps and analyzing the CFD results within these maps. The study uses different amount of EGR and two different diesel fuels; standard EN590 diesel fuel and a paraffinic hydrotreated vegetable oil (HVO). The detailed chemical kinetic calculations take into account the different EGR rates and the properties of the fuels. The residence time in the kinetical calculations is used to explain sooting combustion behavior within diesel combustion. It was observed that NO emission trends can be well captured with the Phi-T maps but the situation is more difficult with the engine smoke.
Technical Paper

Experimental Study of Spray Characteristics between Hydrotreated Vegetable Oil (HVO) and Crude Oil Based EN 590 Diesel Fuel

2011-09-11
2011-24-0042
The aim of current study was to compare the global fuel spray characteristics between renewable hydrotreated vegetable oil (HVO) and crude oil-based EN 590 diesel fuel. According to previous studies, the use of HVO enables reductions in carbon monoxide (CO), total hydrocarbon (THC), nitrogen oxide (NOx) and particle matter (PM) emissions without any changes to the engine or its controls. Fuel injection strategies and global fuel spray characteristics affect on engine combustion and exhaust gas emissions. Due to different physical properties of two different fuels, fuel spray characteristics differ. Fuel spray studies were performed with backlight imaging using a pressurized test chamber imitating real engine conditions at the end of compression stroke. However, the measurements were made in non-evaporative conditions. Various injection parameters such as injection pressures and orifice diameter were tested.
Technical Paper

Experimental Study on Structure and Mixing of Low-Pressure Gas Jet Using Tracer-Based PLIF Technique

2011-09-11
2011-24-0039
Natural gas has been considered as one promising alternative fuel for internal combustion (IC) engines to meet strict engine emission regulations and reduce the dependence on petroleum oil. Although compressed natural gas (CNG) intake manifold injection has been successfully applied into spark ignition (SI) engines in the past decade, natural gas direct injection compression ignition (DICI) engine with new injection system is being pursued to improve engine performance. Gas jet behaves significantly different from liquid fuels, so the better understanding of the effects of gas jet on fuel distribution and mixing process is essential for combustion and emission optimization. The present work is aimed to gain further insight into the characteristics of low pressure gas jet. An experimental gas jet investigation has been successfully conducted using tracer-based planar laser-induced fluorescence (PLIF) technique. For safety reason, nitrogen (N₂) was instead of CNG in this study.
Technical Paper

Analyzing Local Combustion Environment with a Flamelet Model and Detailed Chemistry

2012-04-16
2012-01-0150
Measurements have been done in order to obtain information concerning the effect of EGR for the smoke and NOx emissions of a heavy-duty diesel engine. Measured smoke number and NOx emissions are explained using detailed chemical kinetic calculations and CFD simulations. The local conditions in the research engine are analyzed by creating equivalence ratio - temperature (Phi-T) maps and analyzing the CFD results within these maps. The study uses different amounts of EGR and the standard EN590 diesel fuel. The detailed chemical kinetic calculations take into account the different EGR rates. The CFD calculations are made with a flamelet-based combustion model together with detailed chemistry. The results are compared to a previous study where a hybrid local flame area evolution model combined with an eddy breakup - type model was used in the CFD simulations.
Technical Paper

Hydrotreated Vegetable Oil and Miller Timing in a Medium-Speed CI Engine

2012-04-16
2012-01-0862
The objective of this paper is to analyse the performance and the combustion of a large-bore single-cylinder medium speed engine running with hydrotreated vegetable oil. This fuel has a paraffinic chemical structure and high Cetane number. These features enable achievement of complete and clean combustion with different engine setups. The main benefits are thus lower soot and nitrogen oxides emissions compared to diesel fuel. The facility used in this study is a research engine, where the conditions upstream the machine, the valve timing and the injection parameters are fully adjustable. In fact, the boundary conditions upstream and downstream the engine are freely controlled by a separated supply air plant and by a throttle valve, located at the end of the exhaust pipe. The injection system is common-rail: rail pressure, injection timing and duration are completely adjustable.
Technical Paper

Applying Soot Phi-T Maps for Engineering CFD Applications in Diesel Engines

2005-10-24
2005-01-3856
Soot modeling has become increasingly important as diesel engine manufacturers are faced with constantly tightening soot emission limits. As such the accuracy of the soot models used is more and more important but at the same time 3-D CFD engine studies require models that are computationally not too demanding. In this study, soot Phi-T maps created with detailed chemistry code have been used to develop a soot model for engineering purposes. The proposed soot model was first validated against detailed chemistry results in premixed laminar environment. As turbulence in engines is of major importance, it was taken into account in the soot oxidation part of the model with the laminar and turbulent characteristic time- type of approach. Finally, the model was tested in a large bore Diesel engine with varying loads. Within the steps described above, the proposed model was also compared with the well-known Hiroyasu-Magnussen soot model.
X