Refine Your Search

Topic

Search Results

Standard

MAXIMUM ALLOWABLE ROTATIONAL SPEED FOR INTERNAL COMBUSTION ENGINE FLYWHEELS

1995-07-03
HISTORICAL
J1456_199507
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This document applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

Maximum Allowable Rotational Speed for Internal Combustion Engine Flywheels

2012-10-23
CURRENT
J1456_201210
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This document applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

MAXIMUM ALLOWABLE ROTATIONAL SPEED FOR INTERNAL COMBUSTION ENGINE FLYWHEELS

1984-12-01
HISTORICAL
J1456_198412
This practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This practice applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

MAXIMUM ALLOWABLE ROTATIONAL SPEED FOR INTERNAL COMBUSTION ENGINE FLYWHEELS

1990-06-01
HISTORICAL
J1456_199006
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This document applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1988-06-01
HISTORICAL
J215_198806
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1980-01-01
HISTORICAL
J215_198001
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1995-03-01
HISTORICAL
J215_199503
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

STANDARD CLASSIFICATION SYSTEM FOR NONMETALLIC AUTOMOTIVE GASKET MATERIALS

1990-06-01
HISTORICAL
J90_199006
The classification system provides a means for specifying or describing pertinent properties of commercial nonmetallic gasket materials. Materials composed of asbestos, cork cellulose, and other organic or inorganic materials in combination with various binders or impregnants are included. Materials normally classified as rubber compounds are not included, since they are covered in SAE J200 - ASTM D 2000. Gasket coatings are not covered, since details thereof are intended to be given on engineering drawings or in separate specifications.
Standard

NONMETALLIC GASKETS FOR GENERAL AUTOMOTIVE PURPOSES

1963-04-01
HISTORICAL
J90A_196304
These specifications for SAE J90 are intended to define the basic properties of commercial nonmetallic gasketing materials commonly used in automotive applications. These include materials composed of asbestos or other inorganic fibers, cork, or cellulose or other organic fibers, in combination with various binders or impregnants. Rubber compounds without fibrous or cork reinforcement are not included since they are covered in SAE Standard, Specifications for Elastomer Compounds for Automotive Applications—SAE J14, and in ASTM D 735-61T. Although the test methods and values are designed to describe the basic properties of the material in each category, they do not define all of, the properties which govern gasket performance. Caution should, therefore, be exercised in using these specifications as a basis for the selection of materials.
Standard

STANDARD CLASSIFICATION SYSTEM FOR NONMETALLIC AUTOMOTIVE GASKET MATERIALS

1995-03-25
HISTORICAL
J90_199503
The classification system provides a means for specifying or describing pertinent properties of commercial nonmetallic gasket materials. Materials composed of asbestos, cork, cellulose, and other organic or inorganic materials in combination with various binders or impregnants are included. Materials normally classified as rubber compounds are not included, since they are covered in SAE J200—ASTM D 2000. Gasket coatings are not covered, since details thereof are intended to be given on engineering drawings or in separate specifications.
Standard

SEALS—TERMINOLOGY OF RADIAL LIP

1997-05-01
HISTORICAL
J111_199705
The purpose of this SAE Recommended Practice is to provide a glossary of radial seal terms and nomenclature which are normally encountered in the design, manufacture, installation, testing, inspection, and failure mode analysis of radial seals. The information will aid in the understanding and communication among those people associated with radial seals.
Standard

Manual Transmission and Transaxle Efficiency and Parasitic Loss Measurement

1999-08-30
HISTORICAL
J2453_199908
Because of the intense focus on CAFE and fuel emission standards, optimization of the automobile drivetrain is imperative. In light of this, component efficiencies have become an important factor in the drivetrain decision-making process. It has therefore become necessary to develop a universal standard to judge transmission efficiency. This SAE Recommended Practice specifies the dynamometer test procedure which maps a manual transmission’s efficiency. The document is separated into two parts. The first compares input and output torque throughout a specified input speed range in order to determine “in-gear” transmission efficiency. The second procedure measures parasitic losses experienced while in neutral at nominal idling speeds and also churning losses while in gear. The application of this document is intended for passenger car and light truck. All references to transmissions throughout this document include transaxles.
Standard

GUIDE TO THE APPLICATION AND USE OF PASSENGER CAR AIR-CONDITIONING COMPRESSOR FACE SEALS

1990-05-01
HISTORICAL
J1954_199005
This SAE Recommended Practice is intended as a guide in the usage of mechanical face seals for the passenger car air-conditioning compressor application. Included in this guide is a compilation of present practices; for example, a description of various type seals, material combinations, design data, tolerances, drawing format, qualification testing, inspection information and quality control data. The terminology used is recommended to promote uniformity in seal nomenclature.
Standard

RUBBER RINGS FOR AUTOMOTIVE APPLICATIONS

1995-06-29
HISTORICAL
J120_199506
This SAE Recommended Practice covers the dimensional and material requirements of rubber O-rings for automotive application and rectangular section rubber seal rings for automotive applications.
Standard

Seals—Bond Test Fixture and Procedure

2000-10-09
HISTORICAL
J1900_200010
Bond, as it relates to elastomeric seals, is defined as “The adhesion, established by vulcanization, between two cured elastomeric surfaces, or between one cured elastomeric surface and one nonelastomeric surface.”1 Vulcanization refers in this case to chemical bonding. Good bond is essential to the function of elastomeric radial lip seals and other precision bonded parts. This SAE Recommended Practice describes a universal bond test fixture developed by the RMA that can be mounted to a conventional tensile test machine. This will allow a quantitative evaluation of bond rather than a merely qualitative one.
X