Refine Your Search

Topic

Search Results

Journal Article

The Exhaust Emission from Light Duty Vehicles in Road Test in Urban Traffic

2010-05-05
2010-01-1558
The investigations into the emissions from light-duty vehicles are carried out on a chassis dynamometer in the NEDC test in Europe and FTP75 test in the US. Such tests do not entirely reflect the real road conditions. It should be noted that the changes in the methodology of emissions testing should go in the direction where they get closer to the actual road conditions. The paper presents the road test results obtained in an urban congested areas. The analysis of the road tests results (exhaust emissions and fuel consumption) was carried out considering the road conditions (vehicle speed and acceleration). The obtained data were used to specify the dependence characteristics for the influence of the dynamic engine properties on the exhaust emissions. For these measurements a portable SEMTECH DS analyzer by SENSORS, Particle Counter by AVL and Particle Seizer EEPS by TSI has been used.
Technical Paper

The Variation of Functional Characteristics of a Euro VI Selective Catalytic Reduction Reactor after Ageing

2020-09-15
2020-01-2205
The selective catalytic reduction (SCR) of nitrogen oxides by ammonia is commonly applied as a method of exhaust aftertreatment for lean burn compression ignition (CI) engines. The catalytic reactor of an SCR system, like all catalytic emission control devices, is susceptible to partial deactivation as its operating time progresses. Long-term exposure of an SCR reactor to exhaust gas of fluctuating temperature and composition results in variations of the characteristics of its catalytically active layer. The aim of this study was to observe and investigate the variation of parameters characterizing the SCR reactor as a result of its ageing. Attention was paid to changes in ammonia storage capacity, selectivity of chemical reactions and maximum achievable NOx conversion efficiency. The experimental setup was a heavy duty (HD) Euro VI-compliant engine and its aftertreatment system (ATS). The setup was installed on a transient engine dyno instrumented with emission measurement devices.
Technical Paper

An Analysis of Emissions at Low Ambient Temperature from Diesel Passenger Cars Using the WLTP Test Procedure

2020-09-15
2020-01-2186
The aim of this paper is to analyse the results of regulated and unregulated emissions and carbon dioxide (CO2) emissions of passenger cars equipped with compression-ignition engines that meet the emission Euro 6d standards. Both test vehicles featured selective catalytic reduction (SCR) systems for control of oxides of nitrogen (NOx) and one vehicle also featured a passive NOx absorber (PNA). Research was performed using the current European Union exhaust emission test methods for passenger cars (Worldwide harmonized Light vehicles Test Procedures (WLTP)). Emission testing was performed on a chassis dynamometer, within a climatic chamber, at two different ambient temperatures: 23°C (i.e. Type I test) and -7°C (known as a Type VI test - currently not required for this engine type according to EU legislative requirements).
Journal Article

Regulated and Unregulated Exhaust Emissions from CNG Fueled Vehicles in Light of Euro 6 Regulations and the New WLTP/GTR 15 Test Procedure

2015-04-14
2015-01-1061
The aim of this paper was to explore the influence of CNG fuel on emissions from light-duty vehicles in the context of the new Euro 6 emissions requirements and to compare exhaust emissions of the vehicles fueled with CNG and with gasoline. Emissions testing was performed on a chassis dynamometer according to the current EU legislative test method, over the New European Driving Cycle (NEDC). Additional tests were also performed on one of the test vehicles over the World Harmonized Light Vehicles Test Cycle (WLTC) according to the Global Technical Regulation No. 15 test procedure. The focus was on regulated exhaust emissions; both legislative (CVS-bag) and modal (continuous) analyses of the following gases were performed: CO (carbon monoxide), THC (total hydrocarbons), CH4 (methane), NMHC (non-methane hydrocarbons), NOx (oxides of nitrogen) and CO2 (carbon dioxide).
Technical Paper

RDE-Compliant PEMS Testing of a Gasoline Euro 6d-TEMP Passenger Car at Two Ambient Temperatures with a Focus on the Cold Start Effect

2020-04-14
2020-01-0379
European Union RDE (real driving emissions) legislation requires that new vehicles be subjected to emissions tests on public roads. Performing emissions testing outside a laboratory setting immediately raises the question of the impact of ambient conditions - especially temperature - on the results. In the spirit of RDE legislation, a wide range of ambient temperatures are permissible, with mathematical moderation (correction) of the results only permissible for ambient temperatures <0°C and >+30°C. Within the standard range of temperatures (0°C to +30°C), no correction for temperature is applied to emissions results and the applicable emissions limits have to be met. Given the well-known link between the thermal state of an engine and its emissions following cold start, ambient temperature can be of great importance in determining whether a vehicle meets emissions requirements during an RDE test.
Technical Paper

The Impact of the Drive Mode of a Hybrid Drive System on the Share of Electric Mode in the RDC Test

2020-09-15
2020-01-2249
The share of hybrid and electric powertrains in the market increases continuously. In local driving conditions, electric vehicles are zero-emission, yet their regular use requires an infrastructure allowing the recharging of high-voltage batteries. Hybrid vehicles also allow the use of the electric drive; however, when the high-voltage battery is low, a combustion engine is used to recharge it. Hybrid powertrains do not require any changes in the infrastructure, nor do they force any changes in the driver's habits. The use of a hybrid vehicle may, however, reduce the operating time of the combustion engine, thus contributing to the reduction of fuel consumption. This reduction of fuel consumption results from a specifically selected energy flow strategy in hybrid systems. This strategy was the focus of the research performed to identify the energy flow conditions in a hybrid drive system under driving conditions corresponding to the RDE test.
Journal Article

Performance of Particle Oxidation Catalyst and Particle Formation Studies with Sulphur Containing Fuels

2012-04-16
2012-01-0366
The aim of this paper is to analyze the quantitative impact of fuel sulfur content on particulate oxidation catalyst (POC) functionality, focusing on soot emission reduction and the ability to regenerate. Studies were conducted on fuels containing three different levels of sulfur, covering the range of 6 to 340 parts per million, for a light-duty application. The data presented in this paper provide further insights into the specific issues associated with usage of a POC with fuels of higher sulfur content. A 48-hour loading phase was performed for each fuel, during which filter smoke number, temperature and back-pressure were all observed to vary depending on the fuel sulfur level. The Fuel Sulfur Content (FSC) affected also soot particle size distributions (particle number and size) so that with FSC 6 ppm the soot particle concentration was lower than with FSC 65 and 340, both upstream and downstream of the POC.
Journal Article

A Comparison of Ammonia Emission Factors from Light-Duty Vehicles Operating on Gasoline, Liquefied Petroleum Gas (LPG) and Compressed Natural Gas (CNG)

2012-04-16
2012-01-1095
Vehicular ammonia emissions are currently unregulated, even though ammonia is harmful for a variety of reasons, and the gas is classed as toxic. Ammonia emissions represent a serious threat to air quality, particularly in urban settings; an ammonia emissions limit may be introduced in future legislation. Production of ammonia within the cylinder has long been known to be very limited. However, having reached its light-off temperature, a three-way catalyst can produce substantial quantities of ammonia through various reaction pathways. Production of ammonia is symptomatic of overly reducing conditions within the three-way catalyst (TWC), and depends somewhat upon the particular precious metals used. Emission is markedly higher during periods where demand for engine power is higher, when the engine will be operating under open-loop conditions.
Journal Article

An Investigation into Cold Start Emissions from Compression Ignition Engines using EU Legislative Emissions Test Procedures

2013-04-08
2013-01-1304
Diesel (compression ignition, CI) engines are increasingly exploited in light-duty vehicles, due to their high efficiency and favorable characteristics. Limited work has been performed on CI cold-start emissions at low temperatures. This paper presents a discussion and a brief literature review of diesel cold-start emissions phenomena at low ambient temperatures and the results of tests performed on two European light-duty vehicles with Euro 5 CI engines. The tests were performed on a chassis dynamometer within an advanced climate-controlled test laboratory at BOSMAL Automotive Research and Development Institute, Poland to determine the deterioration in emission of gaseous (HC, CO, NOx, CO2) and solid (PM, PN) pollutants following the EU legislative test procedure (testing at 20°C to 30°C and at -7°C, performed over the NEDC). The tests revealed appreciable increases in emissions of regulated pollutants.
Journal Article

Low Ambient Temperature Cold Start Emissions of Gaseous and Solid Pollutants from Euro 5 Vehicles featuring Direct and Indirect Injection Spark-Ignition Engines

2013-09-08
2013-24-0174
Spark ignition (SI) engines are susceptible to excess emissions at low ambient temperatures. Direct injection leads to the formation of particulate matter (PM), and direct injection spark ignition (DISI) engines should show greater PM emissions at low ambient temperatures. This study compares excess emissions of gaseous and solid pollutants following cold start at a low ambient temperature and the standard test temperature. Euro 5 passenger cars were tested on a chassis dynamometer within BOSMAL's climate-controlled test chamber, according to European Union legislation (−7°C over the urban driving cycle (UDC), and at 25°C). Two vehicles were also tested over the entire New European Driving Cycle (NEDC). Emissions of regulated compounds and carbon dioxide were analyzed; particulate emissions (both mass and number) were also measured, all using standard procedures.
Journal Article

Particulate Emissions from European Vehicles Featuring Direct Injection Spark Ignition Engines Tested Under Laboratory Conditions

2014-04-01
2014-01-1608
Direct injection gasoline engines have been gaining popularity for passenger car applications, particularly in the EU. It is well known that emissions of particulate matter are an inherent disadvantage of spark ignition engine with direct injection. Direct injection of gasoline can lead to the formation of substantial numbers of particulates, a proportion of which survive to be emitted from the vehicle's exhaust. EU legislation limits particle mass (PM) emissions; particle number (PN) is soon to be limited, although an opt-out means that dedicated filters will not be required immediately. A range of tests were conducted on a pool of Euro 5 passenger cars in BOSMAL's climate controlled emissions laboratory, using EU legislative test methodology. In addition, further measurements were performed (particle size distribution, tests at multiple ambient temperatures).
Journal Article

The Impact of Fuel Ethanol Content on Particulate Emissions from Light-Duty Vehicles Featuring Spark Ignition Engines

2014-04-01
2014-01-1463
Ethanol has long been a fuel of considerable interest for use as an automotive fuel in spark ignition (SI) internal combustion engines. In recent years, concerns over oil supplies, sustainability and geopolitical factors have lead multiple jurisdictions to mandate the blending of ethanol into standard gasoline. The impact of blend ethanol content on gaseous emissions has been widely studied; particulate matter emissions have received somewhat less attention, despite these emissions being regulated in the USA. Currently, in the EU particulate matter emissions from SI engines are partially regulated - only vehicles featuring direct injection SI engines are subject to emissions limits. A range of experiments was conducted to determine the impact of fuel ethanol content on the emissions of solid pollutants from Euro 5 passenger cars.
Technical Paper

A Comparison of Tailpipe Gaseous Emissions from the RDE and WLTP Test Procedures on a Hybrid Passenger Car

2020-09-15
2020-01-2217
Non-plugin hybrids represent a technology with the capability to significantly reduce fuel consumption (FC), without any changes to refuelling infrastructure. The EU market share for this vehicle type in the passenger car segment was 3% in 2018 and this powertrain type remains of interest as an option to meet the European Union (EU) fleet average CO2 limits. EU legislative procedures require emissions limits to be met during the chassis dynamometer test and in the on-road real driving emissions (RDE) test, while official CO2/FC figures are quantified via the laboratory chassis dynamometer test only. This study employed both legislative test procedures and compared the results. Laboratory (chassis) dynamometer testing was conducted using the Worldwide Harmonised Light Vehicles Test Procedure (WLTP). On-road testing was carried out in accordance with RDE requirements, measuring the concentration of regulated gaseous emissions and the number of solid particles (PN).
Technical Paper

Possibilities of NOx Reduction in the Emissions of Compression Ignition Engines through Ceramic Oxygen Conductors and Thermoelectric Materials

2007-08-05
2007-01-3449
One of the main issues in the development of diesel engines is the NOx emission while the chief cause for such emission is high nitrogen content in the air and high temperature of combustion. There is a variety of methods to reduce this particular emission. One of the most widespread is exhaust gas recirculation and one of the most recent is the application of Adblue additive into the exhaust gases as a reducing agent. There are also catalytic converters capable of reducing the said emission but their efficiency is as yet insufficient. One of the more daring related concepts is the elimination of nitrogen from the air supplied to the combustion chamber through the application of ceramic ionic conductors. The technology applied in the last method is a dynamically advancing trend in material engineering. The development in this field indicates that, soon, an oxygen generator useful in the automotive engineering will become a reality.
Technical Paper

The Influence of Synthetic Oxygenates on Euro IV Diesel Passenger Car Exhaust Emissions

2007-01-23
2007-01-0069
In the year 2005, the EURO IV fuel specification came into effect and the requirements for diesel fuel properties have become even more stringent. In this way, the potential of diesel fuel for emissions reduction has already been to a large extent exploited and the most emissions-sensitive fuel parameters can now be changed in a narrow range only. The shortfall in NOx and PM emissions control in diesel engines is, however, so great that more drastic fuel changes will be needed. One of the most promising fuel modifications for exhaust emissions control seems to be oxygenated additives. The objective of the study described in this paper was to analyze under transient conditions the influence of synthetic oxygenated fuel additives on exhaust emissions. The tests were conducted on a Euro IV passenger car. Six oxygenated additives were tested over the New European Driving Cycle (NEDC).
Technical Paper

Analysis of Uncertainty of the Emission Measurement of Gaseous Pollutants on Chassis Dynamometer

2007-04-16
2007-01-1324
This paper evaluates the accuracy of emission measurement of regulated gaseous pollutants from vehicles tested on chassis dynamometers. The paper describes sources of error during exhaust emissions measurement. A model of uncertainty using statistical analysis and standard uncertainty propagation techniques has been used. The model, based on individual uncertainties of different instruments used in the measurement process, as well statistical analysis evaluating uncertainties resulting from the errors introduced by the vehicle, the driver and the chassis dynamometer were all used to compute the total uncertainty of the emission measurement. The paper shows that current CVS system and analytical techniques used to measure exhaust emissions are not sufficient to meet Euro 5 standards. Either an improvement to the CVS system or the development of a new emission sampling system is a prerequisite to measure the emissions from vehicles complying with Euro 5 or SULEV.
Technical Paper

A Study of RME-Based Biodiesel Blend Influence on Performance, Reliability and Emissions from Modern Light-Duty Diesel Engines

2008-04-14
2008-01-1398
The paper evaluates the possibility of using different biodiesel blends (mixture of diesel fuel and Fatty Acid Methyl Esters) in modern Euro 4/ Euro 5 direct-injection, common-rail, turbocharged, light-duty diesel engines. The influence of different quantity of RME in biodiesel blends (B5, B20, B30) on the emission measurement of gaseous pollutants, such as: carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx), carbon dioxide (CO2) and particulate matter (PM) for light-duty-vehicle (LDV) during NEDC cycle on the chassis dynamometer as well as engine performance and reliability in engine dyno tests were analysed. All test results presented have been to standard diesel fuel. The measurement and analysis illustrate the capability of modern light-duty European diesel engines fueled with low and medium percentages of RME in biodiesel fuel with few problems.
Technical Paper

Non Pt Catalyst Group in Active Part of New PM Filter

2008-06-23
2008-01-1551
The aim of this work was a preliminary discernment of the possibility of application of Pd-Au-Ag-Ni-Co (non Pt) nanometric, powder alloy as an active part of a new PM filter. The hollow part structure of TiO2-x-RuO2-x has been proposed as the active layer on the catalyst support, composed of SiC. This structure is used in the catalyst technology. The washcoat of TiO2-x-RuO2-x has been obtained by the Flame Spray Pyrolysis Deposition method (FSPD). The influence of the preparation conditions such as: flow velocity, salt concentration, temperature and process atmosphere on the size and shape of TiO2-x-RuO2-x particles has been determined. The catalyst alloy contains nanoparticles of Pd-Au, which encapsulated the nanoparticles of Ag and Ni. Such prepared nano-particles containing noble metals or metals 4d (Ni, Co, Ag), show high tolerance to sulfur and good reversible properties. The atoms of Pd prefer five coordinated sites of Ti for adsorption.
Technical Paper

The Influence of Synthetic Oxygenates on Euro IV Diesel Passenger Car Exhaust Emissions - Part 2

2008-06-23
2008-01-1813
The paper presents the test results of the influence of maleate oxygenated additives to diesel fuel on exhaust emissions. Following the previous tests of glycol ethers (SAE Paper 2007-01-0069), the authors decided to use maleates as oxygenates to obtain greater changes in PM/NOx trade-off than the changes obtained as a result of the use of glycol ethers. It was found that in the NEDC maleates at the same concentration as in the case of glycol ethers ensure more favourable changes of PM/NOx trade-off and, as a matter of fact, caused greater reduction in PM emissions without the growth of NOx emissions, however, at the cost of CO and HC emissions. The tests performed in the FTP-75 confirmed a significantly weaker influence of maleates, both positive (PM) and negative (CO, HC) than in the NEDC. They did not find in both cycles any influence of maleates at the tested concentration upon fuel consumption and CO2 emissions.
Technical Paper

The Influence of Synthetic Oxygenates on Euro IV Diesel Passenger Car Exhaust Emissions - Part 3

2008-10-06
2008-01-2387
The paper presents the test results relating to the influence of carbonate oxygenated additives to diesel fuel on exhaust emissions. Following the previous tests of glycol ethers (SAE Paper 2007-01-0069) and maleates (SAE Paper 2008-01-1813), the authors decided to use carbonates to obtain an even greater reduction in PM emissions. The significant effectiveness of carbonates on PM emission reduction was confirmed in tests performed by the authors. Diethyl carbonate was the most effective oxygenated compound with regard to PM emission reduction among all the 11 oxygenates which have been tested so far. Moreover, it is important to note that diethyl carbonate caused only a small increase in NOx emissions, thus it allowed for an essential improvement in the PM/NOx trade-off. A significant increase in the CO and HC emissions was, however, a negative effect of the use of carbonates.
X