Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Experimental Investigation on the Potentiality of a GDI System Applied to a Two-Stroke Engine: Analysis on Pollutant Emission and Fuel Consumption Reduction

2018-10-30
2018-32-0047
The small two-stroke engine represents a strategic typology of propulsion system for applications in which lightweight and high power density are required. However, the conventional two-stroke engine will not be compliant with forthcoming legislations about pollutant emissions and new solutions, such as electrification, are seriously taken into account by industry to overcome the two-stroke engine drawbacks. In this scenario, a promising way to allow the two-stroke engine to be competitive is represented by the use of direct injection systems, in order to overcome the long-standing issue of short circuiting fuel. The authors in previous studies developed a low-pressure direct injection (LPDI) system for a 300 cm3 two-stroke engine that was ensuring the same power output of the engine in carbureted configuration and raw pollutant emissions consistent with a four-stroke engine of similar performance.
Technical Paper

On the Potential of Transfer Port Injection Strategies for a Two-Stroke Engine

2022-01-09
2022-32-0057
The main drawback of an in-cylinder Low Pressure Direct Injection (LPDI) in a two-stroke engine is the difficulty of achieving a satisfactory vaporization level in low load conditions. The liquid droplets are characterized by large diameters and, when the temperature level and the velocity of the scavenging flow field are low, the time needed for the droplet vaporization and the homogenization with fresh air becomes too long to guarantee a suitable mixture formation. A transfer port injection allows a higher flexibility, due to the possibility of performing a mixed injection either directly in the cylinder or indirectly in the crank case, depending on the load request or engine speed. Also, an even lower injection pressure can be adopted with respect to an in-cylinder LPDI injection, which is relevant in case of lightweight and low power applications. On the other hand, the time available for the direct in-cylinder injection is limited to the scavenge phase.
Journal Article

Development of a Low Pressure Direct Injection System for a Small 2S Engine. Part I - CFD Analysis of the Injection Process

2015-04-14
2015-01-1727
High specific fuel consumption and pollutant emissions are the main drawbacks of the small crankcase-scavenged two-stroke engine. The symmetrical port timing combined with a carburetor or an indirect injection system leads to a lower scavenging efficiency than a four-stroke engine and to the short-circuit of fresh air-fuel mixture. The use of fuel supply systems as the indirect injection and the carburetor is the standard solution for small two-stroke engine equipment, due to the necessity of reducing the complexity, weight, overall dimensions and costs. This paper presents the results of a detailed study on the application of an innovative Low Pressure Direct Injection system (LPDI) on an existing 300 cm3 cylinder formerly equipped with a carburetor. The proposed solution is characterized by two injectors working at 5 bar of injection pressure.
Technical Paper

Development of a Low Pressure Direct Injection System for a Small 2S Engine. Part II - Experimental Analysis of the Engine Performance and Pollutant Emissions

2015-04-14
2015-01-1730
High specific fuel consumption and pollutant emissions are the main drawbacks of the small crankcase-scavenged two-stroke engine. The symmetrical port timing combined with a carburetor or an indirect injection system leads to a lower scavenging efficiency than a four-stroke engine and to the short-circuit of fresh air-fuel mixture. The use of fuel supply systems as the indirect injection and the carburetor is the standard solution for small two-stroke engine equipment, due to the necessity of reducing the complexity, weight, overall dimensions and costs. This paper presents the results of a detailed study on the application of an innovative Low Pressure Direct Injection system (LPDI) on an existing 300 cm3 cylinder formerly equipped with a carburetor. The proposed solution is characterized by two injectors working at 5 bar of injection pressure.
X