Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Analysis of ethanol spray behavior into a Single Cylinder Optical Research Engine

2020-01-13
2019-36-0223
The work focuses on studying ethanol spray behavior injected directly inside a spark ignited internal combustion engine in the compression stroke. An experimental procedure for measuring spray penetration and spray overall cone angle produced by a multi-hole direct injector was developed by means of computational codes written in Matlab environment for working with images of spray injections and to acquire calculated results in an automatic way. The shadowgraph technique with back continuous illumination associated with a high speed recording image process was used in a single cylinder optical research engine for acquiring images of Brazilian ethanol fuel injected at 120° before the top dead center of compression stroke. The process of spray injections occurred with engine speeds of 1000 rpm, 2000 rpm and 3000 rpm. The results showed that spray penetrations decrease and spray cone angle increase when the engine speed is raised.
Technical Paper

Optimization Performance of Multi-Fuel Spark Ignition Engine using a turbocharging system

2006-11-21
2006-01-2641
The new trends of the automotive market require the development of a new concept of engines using different types of fuel, mainly those resulting from alternative sources of energy. For this purpose those multi-fuel engines must function with higher energy efficiency therefore allowing for lower fuel consumption and a drastic reduction of exhaust emission. The multi-fuel engines available in the market display only one volumetric compression ratio, which leaves ample room for the development of a better level of fuel energy use. To achieve so, such an engine must count on a variable volumetric compression ratio, which, despite being technically possible, is not economically viable for a low cost product. The present project intends to create a system capable of achieving the best performance for all types of fuel through the variation of the boost pressure, viable for a low cost product, without changing its volumetric compression ratio.
Technical Paper

Thermodynamic Modeling of Compression, Combustion and Expansion Processes of Gasoline, Ethanol and Natural Gas with Experimental Validation on a Flexible Fuel Engine

2007-09-16
2007-24-0035
This paper describes the development of a computational thermodynamic model of compression, combustion and expansion processes of gasohol, ethanol and Natural Gas (NG) for the cylinder pressure curve prediction of a Flexible Fuel engine, working with a NG kit installed. The combustion process is modeled using a Wiebe function. Equations for specific heat at constant pressure (Cp) were developed for each fuel for temperatures up to 4000 K. The model output generates the cylinder gas pressure and temperature, work output and heat release profiles as functions of crank angle, allowing studies of engine performance parameters in different working conditions for each fuel. The differences between the experimental and simulation results were lower than 4% for the maximum cylinder pressure value.
Technical Paper

In Cylinder Pressure Curve Simulation On Multifuel Engines - A Comparison Between A Polytrophic And General Thermodynamic Model For Gasoline, Ethanol And Natural Gas

2007-11-28
2007-01-2820
Brazil is known for its long experience on using alternative fuels, mainly ethanol for light duty vehicles. In 2002, it was released the Flexible fuel car that can run with gasohol (gasoline with 22% of ethanol), hydrated ethanol or any blend of these fuels. By the end of 2006, national production of these vehicles represented around 80% of the total. Brazil is also the second world fleet of Natural Gas Vehicles (NGV), with more than 1,4 million light duty converted vehicles. This paper describes the development of a computational thermodynamic model of compression, combustion and expansion processes of gasohol, ethanol and Natural Gas (NG) for the cylinder pressure curve prediction of a Flexible Fuel engine, working with a NG kit installed. The combustion process is modeled using a Wiebe function, which establishes the mass fraction of burned fuel. Convective heat transfer to cylinder walls is estimated with an empirical correlation for heat transfer coefficient determination.
Technical Paper

Impact of Different CNG Compositions on Automotive Applications of Brazilian Market

2007-11-28
2007-01-2792
Over the last few years, a growth of the Brazilian light duty vehicle fleet converted to Natural Gas (NG) has been observed. This is mainly due to license tax reductions on NG vehicles; the increase of the NG distribution around the country and attractive price difference between NG and other fuels. The Brazilian CNG (Compressed Natural Gas) light-duty vehicle fleet has currently reached more than 1,4 million units, being the 2nd largest in the World. ANP (Brazilian National Petroleum Agency) published in 2002 Resolution no104, which defines the NG specification for automotive application. The IBAMA (Brazilian Institute for Environment and Natural Renewable Resources) published in 2002 Resolution no 291, which defines ways for the environmental certification of the NG conversion kits.
Technical Paper

An Introduction to On-Board Emission Measurement as a Tool to Assess Vehicular Emissions from Regular and Alternative Fuels

2007-11-28
2007-01-2621
On-board measurement is a powerful method to assess vehicular exhaust gas emission, since it enables the acquisition of instantaneous raw emission values in real-world conditions. While the vehicle emissions are subject to traffic and environment fluctuations, on-board measurement is a fast and economical way to generate data for fleet emission inventories, for instance. It is part of the mandatory testing for heavy-duty vehicles in the USA, as regulated by the USEPA. In 2004, Petrobras (Brazilian Oil Company) first experienced on-board emission measurements while participating in an international joint project, whose objective was to obtain information regarding the light-duty vehicular gas emission contribution to pollutant levels in some of the major Latin-American cities.
Technical Paper

Diesel Gas Technology Evolution in Brazil and Emissions Considerations

2008-10-07
2008-36-0221
In the 80's, due to the oil crisis, natural gas (NG) began to be regarded as a fuel with great potential for replacing diesel in heavy duty vehicles. At that time, Petrobras, together with other companies, developed conversion kit technology for heavy duty diesel engines to run burning simultaneously diesel and NG, known as diesel gas. For several reasons, the trials were interrupted. In the late 90's and beginning of the 2000's, factors such as NG availability, expansion of NG distribution network; increase of NG converted light duty vehicle fleet, government interest in increasing NG's energy matrix share, all together made a scenario which stimulated new developments in diesel gas technology. The scenario changed in the last couple of years, with Brazilian NG demand reaching its offering, mainly due to thermoelectricity generation guarantee of supply. This makes the diesel gas technology more attractable than the NG dedicated technologies.
Technical Paper

Fuel Economy – Method for Calculating Uncertainty of Measurement of Light-Duty Vehicles

2008-10-07
2008-36-0224
Uncertainty in measurements is a complex issue to obtain accurate results in vehicle fuel consumption tests. Petrobras Research Center carried out a study to calculate the final uncertainty of measurement during a vehicle fuel economy test following a feasible method that can be used in many laboratories. This study was based on the ISO-GUM (Guide to the expression of uncertainty in measurement) and on the Brazilian legislations ABNT NBR-6601 (pollutant emission) [1] and NBR-7024 (fuel economy tests) [2].
Technical Paper

Technological Solutions for Urucu Natural Gas Usage in Light-Duty Vehicles

2008-10-07
2008-36-0207
In last few years, Petrobras has been working to make feasible the vehicular usage of the natural gas (NG) produced in Brazilian north region. This gas is produced in the Urucu field located at the Amazon forest. Due to its low methane and high nitrogen contents that could promote, respectively, performance losses and higher NOx emissions, Urucu's gas does not meet ANP specification for vehicular natural gas. Previous studies performed at Petrobras Research Center (CENPES) indicated the possibility of vehicular application for Urucu's NG, attending the Brazilian emission legislation (PROCONVE). However, with new PROCONVE's phases, recent vehicles have more advanced technological levels of fuel injection and catalyst systems, which require that kits for natural gas follow this evolution, including interfacing with flexible fuel engines.
Technical Paper

Technologies for CO2 Mitigation on Light-Duty Vehicles — An Overview

2009-10-06
2009-36-0079
In the last years, world's general concern about climate changes and their effects on human life has strongly increased. Some countries, such as European Union members and the USA, are improving their legislations in order to limit vehicular CO2 emissions. To comply with these limits, new vehicle and fuel technologies are being developed in many places. Thus, the main goal of this paper is to present a comprehensive overview of some of these technologies for light-duty vehicles based on international published references and some experiences of Petrobras Research Center (CENPES). Also, this work addresses to some regulatory initiatives, such as new CO2 emission legislations and fuel economy labeling programs.
Technical Paper

Hybrid Electric Vehicles - Technology Evolution and Experience with Brazilian Gasolines E25

2010-05-05
2010-01-1442
Due to worldwide concern regarding greenhouse gases emission, mainly CO₂, automakers are developing new technologies to reduce vehicles' fuel consumption. One of the most promising technologies, growing fast in USA, Japan and Europe is the Hybrid Electric Vehicles (HEVs). In the Brazilian Market, HEVs availability is still absent, which causes uncertainties about possible impacts caused by the introduction of this new vehicle technology in the big cities. However, as requirements of non-pollutant technologies arise, HEVs are expected to be available in Brazilian Market in the next years. Within this scenario, in 2002, aiming to evaluate the adequacy of Brazilian Gasolines blended with up to 25% v/v of Ethanol in HEV technology, Petrobras Research and Development Center (CENPES) purchased from USA a 2002 Toyota Prius and a 2002 Honda Insight. Since then, both HEVs are being tested at CENPES's Vehicle Test Laboratory (LEV).
Technical Paper

Experimental Investigation of Different Hydrous Ethanol-Gasoline Blends on a Flex-Fuel Engine

2010-10-06
2010-36-0469
In Brazilian market, Flex-Fuel vehicles represented over 90% of new light-duty vehicles sold in 2009. These vehicles can use gasoline blended with anhydrous ethanol (20 to 25% v/v), 100% of hydrous ethanol (contains from 6,2 to 7,4% w/w of water) or any blend of these fuels. An experimental investigation was done to study fuel consumption, emissions and in-cylinder pressure data of a Flex-Fuel Otto engine, 1.4 L, 4 cylinders. It used gasoline with 22% of anhydrous ethanol as a reference fuel (E22). E22 was blended with different hydrous ethanol contents such as 50% (H50) and 80% (H80), also a 100% hydrous ethanol H100) was used. The main fuel properties were analyzed as part of this work. To control the engine operation, a programmable ECU (Engine Control Unit) was used, allowing spark timing calibration either for maximum break torque (MBT) or to keep the engine below the knocking limit.
Technical Paper

A Comparative Analysis of Direct Injection into a Pressurized Chamber Using an Automatic Image Treatment Methodology

2016-10-25
2016-36-0163
A multi-hole direct injection injector was studied by means of image analysis. Methodologies based on an automatic process of cone angle measurement and edge detection were applied for the spray images generated by a 100 bar injection pressure discharged into a pressurized rigid chamber. A criterion based on pixel values was taken to localize the spray edges as angular coordinates and also with x and y position data. The high pixel values were associated with liquid phase while the low pixel values were associated to its absence. Computational codes written in MATLAB environment were used to analyze the numerical matrices associated to the images. Using the written MATLAB codes, a comparison of the effect of atmospheric back pressure, inside the chamber, on the spray pattern, cone angle and spray penetration were evaluated. The chamber was pressurized with 2.5, 5.0, 7.5 and 10 bar of back pressure. The tested fluid injected was EXXSOL D60 for simulating ethanol fuel behavior.
Technical Paper

SI Engine Performance and Emissions using Surrogate Fuel for Oxygenated Gasoline

2016-10-25
2016-36-0240
Gasoline is a complex mixture, composed of hundreds of different hydrocarbons. Surrogate fuels decrease the complexity of gasoline and are being used to improve the understanding of internal combustion engines (ICEs) fundamental processes. Computational tools are largely used in ICE development and performance optimization using simple fuels, because it is still not possible to completely model a commercial gasoline. The kinetics and interactions among all the chemical constituents are not yet fully understood, and the computational cost is also prohibitive. There is a need to find suitable surrogate fuels, which can reproduce commercial fuels performance and emissions behavior, in order to develop improved models for fuel combustion in practical devices, such as homogeneous charge compression ignition (HCCI) and spark ignition (SI) engines. Representative surrogate fuels can also be used in fuel development processes.
Technical Paper

Experimental Investigation of Internal Exhaust Gas Recirculation on a Variable Valve Actuation Spark Ignition Engine Operating with Gasoline and Ethanol

2016-10-25
2016-36-0399
Exhaust Gas Recirculation - EGR - is a well-known technique to reduce NOx and it’s been applied on Diesel engines for a long time. Later studies and application found that other benefits can be achieved with PFI and GDI gasoline engines, such as pumping loss minimization and efficient knock control. Variable valve actuation valve-trains brought broader application possibilities as it enables full internal EGR control without external paths, high precision and response, as required on transient work modes. Comprehensive investigation on PFI and GDI Spark Ignition engines with external Hot EGR and Cooled EGR are widely available. However, variable valve actuation EGR control review on a flexfuel application is not well explored, and this paper is aimed at doing such.
Technical Paper

Shock Tube for Analysis of Combustion of Biofuels

2013-10-07
2013-36-0300
A burning process in a combustion chamber of an internal combustion engine is very important to know the maximum temperature of the gases, the speed of combustion, and the ignition delay time of fuel and air mixture exact moment at which ignition will occur. The automobilist industry has invested considerable amounts of resources in numerical modeling and simulations in order to obtain relevant information about the processes in the combustion chamber and then extract the maximum engine performance control the emission of pollutants and formulate new fuels. This study aimed to general construction and instrumentation of a shock tube for measuring shock wave. As specific objective was determined reaction rate and ignition delay time of ethanol doped with different levels of additive enhancer cetane number. The results are compared with the delays measured for the ignition diesel and biodiesel.
Technical Paper

PANORAMA OF NATURAL GAS USAGE IN HEAVY DUTY VEHICLES IN BRAZIL

2005-05-11
2005-01-2192
In the 80s, due to the oil crisis, natural gas (NG) appeared as a fuel with great potential for replacing diesel in heavy duty vehicles. At that time, Petrobras, together with other companies, had developed partial conversion kit technology for diesel to diesel plus NG, known as “dual fuel” technology. Engine dynamometer and vehicle bus tests have been developed to verify the technical and economic viability of the “dual fuel” kit. For several reasons, the dual fuel program did not advance and the trials were interrupted. At the same time, other trials, using NG Otto cycle bus engines, manufactured in Brazil, were being conducted, mainly in São Paulo, although unsuccessfully.
Technical Paper

Comparative analysis of the internal combustion engine block vibration with gasoline and ethanol fuel

2022-02-04
2021-36-0010
Ethanol and gasoline are widely used with fuels in Otto cycle engines. These fuels have different heating power and octane number and the engine behaves differently depending on the type of fuel used. The objective of this study is to measure, compare and investigate the factors that affect the block vibration of an internal combustion engine as a function of the fuel used ethanol or gasoline. The experiment consisted of instrumenting the side of the engine block with an accelerometer to measure the level of vibration intensity of the engine running on a bench dynamometer varying engine speed and load conditions. The results showed that the engine vibration level increases with the increase in engine speed and load. The highest level of vibration was achieved in the region of maximum torque and maximum pressure combustion. The combustion process is mainly responsible for the highest level of vibration achieved with ethanol.
Technical Paper

Experimental Study of Spray Pattern, Tip Penetration and Velocity Profiles of a Gasoline Direct Injection Injector Using High Speed Image Recording and Particle Image Velocimetry

2013-10-07
2013-36-0553
This work shows procedures for analyzing sprays produced by a direct injection injector. The parameters studied were tip penetration, spray pattern, cone angles and velocity profiles. Two different experimental procedures were applied. The first one to get knowledge of the initial stage of injection consisted in recording images in 4000 Hz. With the data obtained, the penetrations and penetration rates were evaluated. The second experimental procedure consisted of using the Particle Image Velocimetry technique to get images and velocity data for getting knowledge of spray pattern, external and internal cone angle and velocity profiles of the spray fully developed. Gasoline and ethanol were the two fluids tested on the experiments. The results showed larger cone angles for gasoline, linear decreasing behavior for velocities on the linear velocity profiles and a transient stage for the magnitude of the velocities in the initial stage of injection.
Technical Paper

Conditioning Procedure for HEV's Batteries Applied to Different Emissions and Fuel Economy Cycles

2012-10-02
2012-36-0493
The automobile industry has developed and marketed hybrid electric vehicles (HEV) internationally for over 10 years. The presence of batteries in these vehicles poses difficulties for their approval in laboratory trials. The difference between the initial and final battery state of charge changes the energy balance measured in the tests, affecting the emissions and fuel economy levels. Two proposals have emerged to address this problem. One is described in ISO 23274, which consists in determining and applying a correction factor to the emissions and fuel economy results. This factor is based on the difference between the initial and final battery state of charge after the test. The other is described by SAE J1711 which consists in conditioning the battery, in order to equal the state of charge level at the end and start of the test, avoiding the factor recalculation.
X