Refine Your Search

Topic

Search Results

Standard

Numbering Systems for End Mills

2019-10-09
CURRENT
J2342_201910
This SAE Recommended Practice provides a systematic method for the identification of End Mills. It is intended to assist in the cataloging and supplying of these tools. NOTE 1— Caution must be taken when assigning codes for designation to prevent specifying cutting tools that cannot be physically or economically manufactured. NOTE 2— In particular without limitation, SAE disclaims all responsibility for the accuracy or completeness of information contained within this report if the standards of this report are retrieved, combined, or used in connection with any software.
Standard

Numbering Systems for End Mills

1999-01-20
HISTORICAL
J2342_199901
This SAE Recommended Practice provides a systematic method for the identification of End Mills. It is intended to assist in the cataloging and supplying of these tools. NOTE 1— Caution must be taken when assigning codes for designation to prevent specifying cutting tools that cannot be physically or economically manufactured. NOTE 2— In particular without limitation, SAE disclaims all responsibility for the accuracy or completeness of information contained within this report if the standards of this report are retrieved, combined, or used in connection with any software.
Standard

Data Security Services

2001-12-26
HISTORICAL
J1760_200112
The scope of this SAE Recommended Practice is to require the use of the same Security Services as defined by the International Standard ISO/CD 15764, modified by the Class of Security as determined by the resource provider and referenced in Table 1, Extended Data Link Security References.
Standard

Data Security Services

2019-10-09
CURRENT
J1760_201910
The scope of this SAE Recommended Practice is to require the use of the same Security Services as defined by the International Standard ISO/CD 15764, modified by the Class of Security as determined by the resource provider and referenced in Table 1, Extended Data Link Security References.
Standard

The Effects of Front-Mounted Accessories on Air Bag Sensors and Crashworthiness

2019-10-09
CURRENT
J2431_201910
Almost all light trucks now are being manufactured with at least a driver side air bag and all will have dual air bags by 1998. The driving forces behind this feature are occupant safety, federal regulations, and competition in the industry. Along with the booming popularity of pickups and SUVs, they are commonly accessorized with a wide variety of products. Many accessories for four-wheel drives in particular are mounted on the front of the vehicle. These products include grille/brush guards, winches, snow plows, replacement bumpers, bicycle carriers, etc. Concerns have arisen over the compatibility of these accessories with the vehicle’s air bag system. The vehicle manufacturers are concerned because of their huge investment in design and crash test verification of the complete vehicle system and keen awareness of the federal regulations. The crushability of the front bumper and supporting structure are key elements in the system, so alterations to that area become logical concerns.
Standard

The Effects of Front-mounted Accessories on Air Bag Sensors and Crashworthiness

1997-10-01
HISTORICAL
J2431_199710
Almost all light trucks now are being manufactured with at least a driver side air bag and all will have dual air bags by 1998. The driving forces behind this feature are occupant safety, federal regulations, and competition in the industry. Along with the booming popularity of pickups and SUVs, they are commonly accessorized with a wide variety of products. Many accessories for four-wheel drives in particular are mounted on the front of the vehicle. These products include grille/brush guards, winches, snow plows, replacement bumpers, bicycle carriers, etc. Concerns have arisen over the compatibility of these accessories with the vehicle’s air bag system. The vehicle manufacturers are concerned because of their huge investment in design and crash test verification of the complete vehicle system and keen awareness of the federal regulations. The crushability of the front bumper and supporting structure are key elements in the system, so alterations to that area become logical concerns.
Standard

URETHANE FOR AUTOMOTIVE SEATING

1966-06-01
HISTORICAL
J954_196606
This SAE Recommended Practice is intended to provide uniform tolerances for dimensions of urethane materials used for motor vehicle seating. Table 1 describes these tolerances as related to slab and molded applications.
Standard

VEHICLE PASSENGER DOOR HINGE SYSTEMS

1969-09-01
HISTORICAL
J934A_196909
The scope of this SAE Recommended Practice is to establish recommended uniform test procedures and minimum static load requirements for vehicle passenger door hinge systems. Tests are described that can be conducted on test fixtures and equipment in lab oratory test facilities. The test procedures and minimum performance requirements outlined in this recommended practice are based on currently available engineering data. It is intended that all portions of the recommended practice be periodically reviewed and revised as additional knowledge regarding vehicle hinge system performance under impact conditions is developed.
Standard

VEHICLE PASSENGER DOOR HINGE SYSTEMS

1965-07-01
HISTORICAL
J934_196507
The scope of this SAE Recommended Practice is to establish recommended uniform test procedures and minimum static load requirements for vehicle passenger door hinge systems. Tests are described that can be conducted on test fixtures and equipment in laboratory test facilities. The test procedures and minimum performance requirements outlined in this recommended practice are based on currently available engineering data. It is intended that all portions of the recommended practice be periodically reviewed and revised as additional knowledge regarding vehicle hinge system performance under impact conditions is developed.
Standard

Vehicle Passenger Door Hinge Systems

2019-10-09
CURRENT
J934_201910
The scope of this SAE Recommended Practice is to establish recommended uniform test procedures and minimum static load requirements for vehicle passenger door hinge systems. Tests are described that can be conducted on test fixtures and equipment in laboratory test facilities. The test procedures and minimum performance requirements outlined in this document are based on currently available engineering data. It is intended that all portions of the document be periodically reviewed and revised as additional knowledge regarding vehicle hinge system performance under impact conditions is developed.
Standard

Seals--Terminology of Radial Lip

2002-10-25
CURRENT
J111_200210
The purpose of this SAE Recommended Practice is to provide a glossary of radial seal terms and nomenclature which are normally encountered in the design, manufacture, installation, testing, inspection, and failure mode analysis of radial seals. The information will aid in the understanding and communication among those people associated with radial seals.
Standard

Uniform Reference and Dimensional Guidelines for Collision Repair

2019-10-28
CURRENT
J1828_201910
This SAE Recommended Practice defines, for vehicle manufacturers and collision information and equipment providers, the types of vehicle dimensional data needed by the collision repair industry and aftermarket equipment modifiers to properly perform high-quality repairs to damaged vehicles. Both bodyframe and unitized vehicles, including passenger cars and light trucks, are addressed.
Standard

Uniform Reference and Dimensional Guidelines for Collision Repair

2014-06-26
HISTORICAL
J1828_201406
This SAE Recommended Practice defines, for vehicle manufacturers and collision information and equipment providers, the types of vehicle dimensional data needed by the collision repair industry and aftermarket equipment modifiers to properly perform high-quality repairs to damaged vehicles. Both bodyframe and unitized vehicles, including passenger cars and light trucks, are addressed.
Standard

NUMBERING SYSTEM FOR REAMERS

1990-11-01
HISTORICAL
J2124_199011
This SAE Recommended Practice provides a systematic method for the identification of various types of hand, machine, and shell reamers used in industrial applications. When used as recommended in this report, the numbering system will assist in obtaining consistent reamer descriptions in communications. The report was developed in cooperation with the Automotive Industry Action Group (AIAG).
Standard

Numbering System for Single Diameter and Taper Reamers

2019-10-09
CURRENT
J2124_201910
This SAE Recommended Practice provides a systematic method for the identification of single diameter and taper reamers. It is intended to assist in the cataloging and supplying of these tools. NOTE 1— Caution must be taken when assigning codes for designators to prevent specifying reamers that cannot be physically or economically manufactured. NOTE 2— The Code Number coming from the manufacturer MUST reflect the actual tool construction. NOTE 3— In particular without limitation, SAE disclaims all responsibility for the accuracy or completeness of information contained within this report if the standards of this report are retrieved, combined, or used in connection with any software.
Standard

Numbering System for Single Diameter and Taper Reamers

1998-10-14
HISTORICAL
J2124_199810
This SAE Recommended Practice provides a systematic method for the identification of single diameter and taper reamers. It is intended to assist in the cataloging and supplying of these tools. NOTE 1— Caution must be taken when assigning codes for designators to prevent specifying reamers that cannot be physically or economically manufactured. NOTE 2— The Code Number coming from the manufacturer MUST reflect the actual tool construction. NOTE 3— In particular without limitation, SAE disclaims all responsibility for the accuracy or completeness of information contained within this report if the standards of this report are retrieved, combined, or used in connection with any software.
X