Refine Your Search

Topic

Search Results

Journal Article

Effects of Supercharging, EGR and Variable Valve Timing on Power and Emissions of Hydrogen Internal Combustion Engines

2008-04-14
2008-01-1033
Hydrogen-fueled internal combustion engines equipped with port fuel injection offer a cheap alternative to fuel cells and can be run in bi-fuel operation side-stepping the chicken and egg problem of availability of hydrogen fueling station versus hydrogen vehicle. Hydrogen engines with external mixture formation have a significantly lower power output than gasoline engines. The main causes are the lower volumetric energy density of the externally formed hydrogen-air mixture and the occurrence of abnormal combustion phenomena (mainly backfire). Two engine test benches were used to investigate different means of compensating for this power loss, while keeping oxides of nitrogen (NOx) emissions limited. A single cylinder research engine was used to study the effects of supercharging, combined with exhaust gas recirculation (EGR). Supercharging the engine results in an increase in power output.
Journal Article

High-Speed Characterization of ECN Spray A Using Various Diagnostic Techniques

2013-04-08
2013-01-1616
Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models that will be used to optimize future engine designs. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but because of the uniqueness of each facility, there are uncertainties about their operation. The Engine Combustion Network (ECN) is a worldwide group of institutions using combustion vessels, whose aim is to advance the state of spray and combustion knowledge at engine-relevant conditions. A key activity is the use of spray chamber facilities operated at specific target conditions in order to leverage research capabilities and advanced diagnostics of all ECN participants.
Technical Paper

Demonstrating the Use of Thin Film Gauges for Heat Flux Measurements in ICEs: Measurements on an Inlet Valve in Motored Operation

2016-04-05
2016-01-0641
To optimize internal combustion engines (ICEs), a good understanding of engine operation is essential. The heat transfer from the working gases to the combustion chamber walls plays an important role, not only for the performance, but also for the emissions of the engine. Besides, thermal management of ICEs is becoming more and more important as an additional tool for optimizing efficiency and emission aftertreatment. In contrast little is known about the convective heat transfer inside the combustion chamber due to the complexity of the working processes. Heat transfer measurements inside the combustion chamber pose a challenge in instrumentation due to the harsh environment. Additionally, the heat loss in a spark ignition (SI) engine shows a high temporal and spatial variation. This poses certain requirements on the heat flux sensor. In this paper we examine the heat transfer in a production SI ICE through the use of Thin Film Gauge (TFG) heat flux sensors.
Technical Paper

Laminar Burning Velocity Correlations for Methanol-Air and Ethanol-Air Mixtures Valid at SI Engine Conditions

2011-04-12
2011-01-0846
The use of methanol and ethanol in spark-ignition (SI) engines forms a promising approach to decarbonizing transport and securing domestic energy supply. The physico-chemical properties of these fuels enable engines with increased performance and efficiency compared to their fossil fuel counterparts. An engine cycle code valid for alcohol-fuelled engines could help to unlock their full potential. However, the development of such a code is currently hampered by the lack of a suitable correlation for the laminar flame speed of alcohol-air-diluent mixtures. A literature survey showed that none of the existing correlations covers the entire temperature, pressure and mixture composition range as encountered in spark-ignition engines. For this reason, we started working on new correlations based on simulations with a one-dimensional chemical kinetics code. In this paper the properties of methanol and ethanol are first presented, together with their application in modern SI engines.
Technical Paper

Experimental Investigation and Modelling of the In-Cylinder Heat Transfer during Ringing Combustion in an HCCI Engine

2017-03-28
2017-01-0732
Homogeneous Charge Compression Ignition (HCCI) engines can achieve both a high thermal efficiency and near-zero emissions of NOx and soot. However, their maximum attainable load is limited by the occurrence of a ringing combustion. At high loads, the fast combustion rate gives rise to pressure oscillations in the combustion chamber accompanied by a ringing or knocking sound. In this work, it is investigated how these pressure oscillations affect the in-cylinder heat transfer and what the best approach is to model the heat transfer during ringing combustion. The heat transfer is measured with a thermopile heat flux sensor inside a CFR engine converted to HCCI operation. A variation of the mass fuel rate at different compression ratios is performed to measure the heat transfer during three different operating conditions: no, light and severe ringing. The occurrence of ringing increases both the peak heat flux and the total heat loss.
Technical Paper

Development and Testing of an EGR System for Medium Speed Diesel Engines

2012-04-16
2012-01-0680
Medium speed diesel engines are well established today as a power source for heavy transport and stationary applications and it appears that they will remain so in the future. However, emission legislation becomes stricter, reducing the emission limits of various pollutants to extremely low values. Currently, many techniques that are well established for automotive diesel engines (common rail, after treatment, exhaust gas recirculation - EGR, …) are being tested on these large engines. Application of these techniques is far from straightforward given the different requirements and boundary conditions (fuel quality, durability, …). This paper reports on the development and experimental results of cooled, high pressure loop EGR operation on a 1326kW four stroke turbocharged medium speed diesel engine, with the primary goal of reducing the emission of oxides of nitrogen (NOx). Measurements were performed at various loads and for several EGR rates.
Technical Paper

Evaluation of Some Important Boundary Conditions for Spray Measurements in a Constant Volume Combustion Chamber

2013-04-08
2013-01-1610
Fuel atomization and combustion at engine-like conditions are complicated and sensitive processes which make it hard to perform quantitative experiments with high precision and reproducibility. A better understanding of the processes can be obtained by controlling the boundary conditions. Variable parameters with an important influence on the sprays include fuel temperature, chamber temperature, injection pressure, gas velocity. Controlling all these parameters in an experimental setup is not evident since a lot of them fluctuate with time or interact with each other. Constant volume combustion chambers, using the pre-combustion method, have already shown to be a useful experimental tool for this kind of research purposes. The obtained quantitative results can in a next step be used to evaluate either multi-dimensional or simplified lower dimensional models.
Technical Paper

Performance and Emissions of a SI Engine using Methanol-Water Blends

2013-04-08
2013-01-1319
Using liquid alcohols, such as methanol and ethanol, in spark-ignition engines is a promising approach to decarbonize transport and secure domestic energy supply. Methanol and ethanol are compatible with the existing fuelling and distribution infrastructure and are easily stored in a vehicle. They can be used in internal combustion engines with only minor adjustments and have the potential to increase the efficiency and decrease noxious emissions compared to gasoline engines. In addition, methanol can be synthesized from a wide variety of sources, including renewably produced hydrogen in combination with atmospheric CO₂. Presently, during the production of ethanol or methanol a dehydration step is always applied. This step accounts for a significant part of the entire production process' energy consumption and thus, from an economical point of view, methanol and ethanol could become more interesting alternative fuels if the costs related with dehydration could be reduced.
Journal Article

Calibration of a TFG Sensor for Heat Flux Measurements in a S.I. Engine

2015-04-14
2015-01-1645
In the development of internal combustion engines, measurements of the heat transfer to the cylinder walls play an important role. These measurements are necessary to provide data for building a model of the heat transfer, which can be used to further develop simulation tools for engine optimization. This research will focus on the Thin Film Gauge (TFG) heat flux sensor. This sensor consists of a platinum RTD (Resistance Temperature Detector) on an insulating Macor® (ceramic) substrate. The sensor has a high frequency response (up to 100 kHz) and is small and robust. These properties make the TFG sensor adequate for measurements in the combustion chamber of an internal combustion engine. To use this sensor, its thermal properties - namely the temperature sensitivity coefficient and the thermal product - must be correctly calibrated. First, different calibration setups with a different temperature range are used to calibrate the temperature sensitivity coefficient of the TFG sensor.
Technical Paper

A Critical Review of Experimental Research on Hydrogen Fueled SI Engines

2006-04-03
2006-01-0430
The literature on hydrogen fueled internal combustion engines is surprisingly extensive and papers have been published continuously from the 1930's up to the present day. Ghent University has been working on hydrogen engines for more than a decade. A summary of the most important findings, resulting from a literature study and the experimental work at Ghent University, is given in the present paper, to clarify some contradictory claims and ultimately to provide a comprehensive overview of the design features in which a dedicated hydrogen engine differs from traditionally fueled engines. Topics that are discussed include abnormal combustion (backfire, pre-ignition and knock), mixture formation techniques (carbureted, port injected, direct injection) and load control strategies (power output versus NOx trade-off).
Technical Paper

Investigation of Naphtha-Type Biofuel from a Novel Refinery Process

2022-03-29
2022-01-0752
In order to reduce the carbon footprint of the Internal Combustion Engine (ICE), biofuels have been in use for a number of years. One of the problems with first-generation (1G) biofuels however is their competition with food production. In search of second-generation (2G) biofuels, that are not in competition with food agriculture, a novel biorefinery process has been developed to produce biofuel from woody biomass sources. This novel technique, part of the Belgian federal government funded Ad-Libio project, uses a catalytic process that operates at low temperature and is able to convert 2G feedstock into a stable light naphtha. The bulk of the yield consists out of hydrocarbons containing five to six carbon atoms, along with a fraction of oxygenates and aromatics. The oxygen content and the aromaticity of the hydrocarbons can be varied, both of which have a significant influence on the fuel’s combustion and emission characteristics when used in Internal Combustion Engines.
Technical Paper

Conceptual Model for the Start of Combustion Timing in the Range from RCCI to Conventional Dual Fuel

2022-03-29
2022-01-0468
In the challenge to reduce CO2, NOx and PM emissions, the application of natural gas or biogas in engines is a viable approach. In heavy duty and marine, either a conventional dual fuel (CDF), or a reactivity-controlled compression ignition (RCCI) approach is feasible on existing diesel engines. In both technologies a pilot diesel injection is used to ignite the premixed natural gas. However, the influence of injection-timing and -pressure on the start of combustion timing (SOC) is opposite between both modes. For a single operating point these relations can be explained by a detailed CFD simulation, but an intuitive overall explanation is lacking. This makes it difficult to incorporate both modes into one engine application, using a single controller. In an experimental campaign by the authors, on a medium speed engine, the lowest emissions were found to be very close to the SOC corresponding to the transition from RCCI to CDF.
Technical Paper

A Heat Transfer Model for Low Temperature Combustion Engines

2018-09-10
2018-01-1662
Low Temperature Combustion is a technology that enables achieving both a higher efficiency and simultaneously lower emissions of NOx and particulate matter. It is a noun for combustion regimes that operate with a lean air-fuel mixture and where the combustion occurs at a low temperature, such as Homogeneous Charge Compression Ignition and Partially Premixed Combustion. In this work a new model is proposed to predict the instantaneous heat flux in engines with Low Temperature Combustion. In-cylinder heat flux measurements were used to construct this model. The new model addresses two shortcomings of the existing heat transfer models already present during motored operation: the phasing of the instantaneous heat flux and the overprediction of the heat flux during the expansion phase. This was achieved by implementing the in-cylinder turbulence in the heat transfer model. The heat transfer during the combustion was taken into account by using the turbulence generated in the burned zone.
Technical Paper

Assessment of Empirical Heat Transfer Models for a CFR Engine Operated in HCCI Mode

2015-04-14
2015-01-1750
Homogeneous charge compression ignition (HCCI) engines are a promising alternative to traditional spark- and compression-ignition engines, due to their high thermal efficiency and near-zero emissions of NOx and soot. Simulation software is an essential tool in the development and optimization of these engines. The heat transfer submodel used in simulation software has a large influence on the accuracy of the simulation results, due to its significant effect on the combustion. In this work several empirical heat transfer models are assessed on their ability to accurately predict the heat flux in a CFR engine during HCCI operation. Models are investigated that are developed for traditional spark- and compression-ignition engines such as those from Annand [1], Woschni [2] and Hohenberg [3] and also models developed for HCCI engines such as those from Chang et al. [4] and Hensel et al. [5].
Technical Paper

A Coupled Tabulated Kinetics and Flame Propagation Model for the Simulation of Fumigated Medium Speed Dual-Fuel Engines

2019-09-09
2019-24-0098
The present work describes the numerical modeling of medium-speed marine engines, operating in a fumigated dual-fuel mode, i.e. with the second fuel injected in the ports. This engine technology allows reducing engine-out emissions while maintaining the engine efficiency and can be fairly easily retrofitted from current diesel engines. The main premixed fuel that is added can be a low-carbon one and can additionally be of a renewable nature, thereby reducing or even completely removing the global warming impact. To fully optimize the operational parameters of such a large marine engine, computational fluid dynamics can be very helpful. Accurately describing the combustion process in such an engine is key, as the prediction of the heat release and the pollutant formation is crucial. Auto-ignition of the diesel fuel needs to be captured, followed by the combustion and flame propagation of the premixed fuel.
Technical Paper

Feasibility Study of a New Test Procedure to Identify High Emitters of Particulate Matter during Periodic Technical Inspection

2019-04-02
2019-01-1190
The Diesel Particulate Filter (DPF) is the most effective way to reduce particulate matter emissions from diesel vehicles and is fitted on every passenger car since the EURO5 emission standard. Unfortunately, this essential after-treatment device can be damaged over time or could be defective from the manufacturing, negatively impacting its filtration efficiency. It is also sometimes illegally removed. Today in Europe, the presence and effectiveness of the DPF cannot be determined at the Periodic Technical Inspection (PTI), during which an opacity measurement of the exhaust gases is performed during a free acceleration test. Therefore, this work presents the results of the feasibility study of a new test procedure using devices measuring a particulate matter concentration (PN). The test consists of a PN measurement at low idle, which shows good correlation with NEDC PN emissions.
Technical Paper

The Relevance of Different Fuel Indices to Describe Autoignition Behaviour of Gasoline in Light Duty DICI Engine under PPC Mode

2019-04-02
2019-01-1147
Partially premixed combustion (PPC) with gasoline fuels is a new promising combustion concept for future internal combustion engines. However, many researchers have argued the capabilities of research octane number (RON) and Motor Octane Number (MON) to describe the autoignition behaviour of gasoline fuels in advanced combustion concepts like PPC. The objective of this study is to propose a new method, called PPC number, to characterize the auto ignition quality of gasoline fuels in a light-duty direct injected compression ignition engine under PPC conditions. The experimental investigations were performed on a 4-cylinder Volvo D4 2 litre engine. The ignition delay which was defined as the crank angle degrees between the start of injection (SOI) and start of combustion (SOC) was used to represent the auto ignition quality of a fuel.
Technical Paper

Simulation Based Investigation of Achieving Low Temperature Combustion with Methanol in a Direct Injected Compression Ignition Engine

2019-04-02
2019-01-1152
Low temperature combustion concepts used in compression ignition engines have shown to be able to produce simultaneous reduction of oxides of nitrogen and soot as well as generating higher gross indicated efficiencies compared to conventional diesel combustion. This is achieved by a combination of premixing, dilution and optimization of combustion phasing. Low temperature combustion can be complemented by moving away from fossil fuels in order to reduce the net output of CO2 emissions. Alternative fuels are preferably liquid and of sufficient energy density. As such methanol is proposed as a viable option. This paper reports the results from a simulation based investigation on a heavy-duty multi-cylinder direct injection compression ignition engine with standard compression ratio. The engine was simulated using two different fuels: methanol and gasoline with an octane number of 70.
Technical Paper

The Behavior of a Simplified Spray Model for Different Diesel and Bio-Diesel Surrogates

2015-04-14
2015-01-0950
The need for simulation tools for the internal combustion engine is becoming more and more important due to the complex engine design and increasingly strict emission regulation. One needs accurate and fast models, but fuels consist of a complex mixture of different molecules which cannot realistically be handled in computations. Simplifications are required and are realized using fuel surrogates. The main goal of this work is to show that the choice of the surrogates is of importance if simplified models are used and that the performance strongly depends upon the sensitivity of the fuel properties that refer to the main model hypotheses. This paper starts with an overview of surrogates for diesel and bio-diesel as well as the motivation for choosing them. Next, a phenomenological model for vaporizing fuel-sprays is implemented to assess how well-known surrogates for diesel and bio-diesel affect the obtained results.
Technical Paper

Combustion Characterization of Methanol in a Lean Burn Direct Injection Spark Ignition (DISI) Engine

2019-04-02
2019-01-0566
Lean operation is a promising approach to increase the engine efficiency. One of the main challenges for lean-burn technology is the combustion instability. Using a high laminar burning velocity fuel such as methanol might solve that problem. The potential of lean-burn limit extension with methanol was investigated through a comparison with conventional gasoline. In this work, a direct injection turbocharged SI engine was operated at wide open throttle (WOT), with the load controlled by a lean-burn strategy. The amount of fuel was decreased (or lambda increased) until the combustion became unstable. For methanol, the lambda limit was about 1.5, higher than the lambda limit for gasoline which was only about 1.2. The brake thermal efficiency for methanol increased as lambda increased and reached its peak at ~41% in a lambda range of 1.2-1.4. Then, the efficiency decreased as lambda increased.
X