Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

EGR Strategies Pertaining to High Pressure and Low Pressure EGR in Heavy Duty CNG Engine to Optimize Exhaust Temperature and NOx Emissions

2021-09-22
2021-26-0114
CNG has proven to be a concrete alternative to gasoline and diesel fuel for sustained mobility. Due to stringent emission norms and sanctions being imposed on diesel fuel vehicles, OEMs have shifted their attention towards natural gas as an efficient and green fuel. Newly implemented BS VI emission norms in India have stressed on the reduction of Nitrogen Oxides (NOx) from the exhaust by almost 85% as compared to BS IV emission norms. Also, Indian Automotive market is fuel economy cautious. This challenges to focus on improving fuel economy but without increase in NOx emissions. Exhaust Gas Recirculation (EGR) has the potential to reduce the NOx emissions by decreasing the in-cylinder temperature. The objective of the paper is to model a CNG TCIC engine using 1D simulation in order to optimize the NOx emissions and maintain exhaust temperatures under failsafe limits.
Technical Paper

Optical Strain Measurement- Experimental Tool for Validating Sheet Metal Forming Analysis

2006-10-31
2006-01-3577
Automotive sheet metal components involve complex geometry and large surface areas. In addition to complex geometry, thrust for reduction of the new product development cycle demands for virtual simulation before prototyping. However in order to validate the simulation parameters, the numerical model needs to be experimentally verified. Conventional strain measurement techniques like Mylar tape, Traveling microscope are tedious and error prone for sheet metal forming analysis. Recently, optical strain measurement techniques are being used in sheet metal forming industry. Through this, strain measurement is more accurate, less time consuming and repeatable. This paper discusses a case study in which the analysis results of an automotive sheet metal component are experimentally validated by circular grid analysis using an optical strain measurement method. The circular grids are marked in the sheet metal blanks by screen-printing.
Technical Paper

Impact of Intake Geometry on EGR Homogeneity in Intake Ports of a Multi-cylinder Diesel Engine

2015-09-29
2015-01-2889
In heavy duty diesel engines, exhaust gas recirculation is often preferred choice to contain NOx emissions, in this a part of exhaust gas is tapped from exhaust manifold or later and recirculated to air intake pipe before intake manifold. Critical to such engines is the design of air intake pipe and intake manifold combination in view of proper exhaust gas mixing with intake air. The variation in exhaust gas mass fraction at each intake port should be as minimal as possible and this variation must be contained within +/− 10% band to have a minimal cylinder to cylinder variation of pollutants. Exhaust gas homogeneity for various intake configurations was studied using three-dimensional computational fluid dynamics for a 4 cylinder, 3.8 L, Diesel fuelled, common rail, turbocharged and intercooled heavy duty engine. Flow field was studied in the computational domain from the point before exhaust gas mixing till all the four intake ports.
X