Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Structural Fatigue Strength Evaluation of Commercial Vehicle Structures by Calculating Damage Due to Road Load Inputs

2013-01-09
2013-26-0139
Evaluation of vehicle structural durability is one of the key requirements in design and development of today's automobiles. Computer simulations are used to estimate vehicle durability to save the cost and time required for building and testing the prototype vehicles. The objective of this work was to find the service life of automotive structures like passenger commercial vehicle (bus) and truck's cabin by calculating cumulative fatigue life for operation under actual road conditions. Stresses in the bus and cabin are derived by means of performing finite element analysis using inertia relief method. Multi body dynamics simulation software ADAMS was used to obtain the load history at the bus and cabin mount locations - using measured load data as input. Strain based fatigue life analysis was carried out in MSC-Fatigue using static stresses from Nastran and extracted force histories from ADAMS. The estimated fatigue life was compared with the physical test results.
Technical Paper

Development of a Specific Durability Test Cycle for a Commercial Vehicle Based on Real Customer Usage

2013-01-09
2013-26-0137
Every class of commercial vehicle has an entirely different usage pattern based on customer application and needs. To perform accurate durability testing, these prototypes should run on real customer usage locations and loading conditions for the target life. However, this is time consuming and not practical, hence resulting in Proving Ground (PG) testing. It is also known that a standard PG durability cycle cannot be valid for every class of vehicle and every application. So a statistical approach was followed to develop an accelerated durability test cycle based on in-house PG test surfaces in order to match the real customer usage to the durability target life. This paper summarizes the methodology to develop Durability Validation test cycles for commercial vehicle based on the work carried out on a heavy duty tipper and an intermediate commercial vehicle.
Technical Paper

Design and Development of Front Air Suspension for Front Engine Bus with Floor at Entry Plus One Step

2012-09-24
2012-01-1934
The automotive industry is heading towards introduction of newer and newer technology aimed at providing better comforts and value to the end user. The public/ private transport vehicles in urban/rural areas with FE has wide level of acceptance in South East Asian countries. The acceptance of FE buses is mainly because of the ram air cooling of the engine, lesser maintenance, higher fuel efficiency etc whereas rear engine buses with entry plus one step are deprived of these benefits. Hence, we have designed and developed a new Front Engine Semi -Low Floor bus having floor at E+1 step. The primary design challenge was to meet the uniform floor throughout the length of the vehicle. This uniqueness will help in easy ingress and egress of the passengers which helps in reducing the turn around rime of the vehicle. Other challenges includes, meeting the customer requirements in terms of application, load and duty cycle for this new design.
Technical Paper

Real Time Simulation of Various Loads and Validation of Radiator CAC Assembly Used in Commercial Vehicle Engines

2023-05-25
2023-28-1337
Due to the emerging technologies and globalization, expectations of the customers on commercial vehicles are getting increased over the period. It is an important duty of an OEM to deliver a perfectly configured product to suit the customer requirements. When it comes to configuration of a vehicle, engine power is one of the key factors which indicate the performance of that vehicle. There is a tough competition between every OEM to increase the engine power for enhancing the overall operational performance. One method to increase power is to improve its volumetric efficiency. This is achieved with help of turbocharger and Charge Air Cooler (CAC). CAC improves volumetric efficiency by increasing intake air-charge density. Any failure on CAC leads to lower the volumetric efficiency and increase in turbocharger loading. This paper deals with the validation of CAC assembly using different test conditions by analyzing potential failure modes against the field issues.
Technical Paper

Reliable Measuring System for Fuel Consumption of Earth-Movers

2015-01-14
2015-26-0148
Fuel economy is an important customer requirement which determines the position of earth-movers such as backhoe loaders in the market. Earth-movers are heavy duty machines that are used for construction works. Currently fuel consumption in earth-movers is quantified as fuel consumed per unit time (Liters per hour). Similarly, conventional measure of productivity of the earth-movers is in terms of volume of soil trenched per hour. Measurements using the above scales showed wide variations in measured fuel consumption and productivity, For the same equipment between measurements Two equipment of same make at different trench locations and Against the competitor equipment This inconsistency and lack of a proper measuring system made logical decision making extremely difficult. This paper describes the step by step procedures involved in deriving the methodology for robust fuel consumption measurement of earth-mover vehicles.
Technical Paper

Modelling and Experimental Study of Internal EGR System for NOx Control on an Off-Road Diesel Engine

2014-10-13
2014-01-2645
This study deals with the development of an internal EGR (Exhaust Gas Recirculation) system for NOx reduction on a six cylinder, turbocharged intercooled, off-road diesel engine based on a modified cam with secondary lift. One dimensional thermodynamic simulation model was developed using a commercially available code. MCC heat release model was refined in the present work by considering wall impingement of the fuel as given by Lakshminarayanan et al. The NOx prediction accuracy was improved to a level of 90% by a generic polynomial fit between air excess ratio and prediction constants. Simulation results of base model were correlating to more than 95% with experimental results for ISO 8178 C1 test cycle. Parametric study of intake and exhaust valve events was conducted with 2IVO (Secondary Intake Valve Opening) and 2EVO (Secondary Exhaust Valve Opening) methods. Combinations of different opening angles and lifts were chosen in both 2IVO and 2EVO methods for the study.
Technical Paper

Real Road Transient Driving Cycle Simulations in Engine TestBed for Fuel Economy Prediction

2014-10-13
2014-01-2716
The present work describes an approach to predict the vehicle fuel economy by simulating its engine drive cycle on a transient engine dynamometer in an engine testbed. The driving cycles investigated in the current study were generated from the typical experimental data measured on different vehicles ranging from Intermediate Commercial Vehicle (ICV) to Heavy-duty Commercial Vehicle (HCV) in real-world traffic conditions include various cities, highways and village roads in India. Reliability and robustness of the method was studied on various engines with cubic capacity from 3.8 liters to 8 liters using different drive cycles, and the results were discussed. Later, using same measured drive cycles, vehicle fuel economy was predicted by a vehicle simulation tool (AVL CRUISE) and results were compared with experimental data. In addition, engine coolant temperature effect on fuel economy was investigated.
Journal Article

Design and Analysis of Lifting Pusher Drop Axle for Heavy Commercial Vehicle

2017-04-11
2017-01-9176
Lifting axles are auxiliary axles that provide increased load carrying capacity in heavy commercial vehicles. Lift axle gives better fuel efficiency as well as it reduces the operational costs by means of increasing the loading carrying capacity. These axles are raised when the vehicle is in unloaded condition, thus increasing the traction on remaining wheels and reducing the tire wear which in turn lower down the maintenance cost of the vehicle. Lifting height and force requires to lift the whole mechanism and are two main considerable factors to design the lifting axle mechanism. Although in India currently, the use of lift mechanism of single tire with continuous axle is more common. But in the case of pusher axle, continuous axle is unable to lift more after certain height because of the draft angle of the propeller shaft, and single tire axle which has less load carrying capacity up to 6T (Tons).
X