Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Comparison and Evaluation of Engine Wear, Performance, NOx Reduction and Nano Particle Emission of Diesel, Karanja and Jatropha Oil Methyl Ester Biodiesel in a Military720 kW, heavy duty CIDI Engine Applying EGR with Turbo Charging

2020-04-14
2020-01-0618
Global warming, stringent pollution legislations and depletion of oil reserves have opened up an opportunity to research on bio fuels. Biodiesel can be produced from edible and non-edible vegetable oils, waste bio mass and animal fats. Biodiesel is a renewable, bio gradable, sulphur free, non-toxic, oxygenated and green alternative fuel. Karanja and Jatropha oils are non- edible vegetable oils. Karanja and Jatropha oil methyl ester biodiesels are prepared by the transesterification process, using methanol. Jatropha oil methyl ester (JOME) and Karanja oil methyl ester (KOME) biodiesels have comparable performance with low gaseous emission characteristics, except a higher NOx emission, in comparison to diesel fuel. Recent emission legislations also restrict nano particle emission in addition to particulate matter, due to their adverse impact on health.
Technical Paper

Experimental Investigation of the Effect of Gasoline Fuel on Engine Performance, NOx reduction, and Engine Wear of a 38.8L Military Heavy Duty CIDI Diesel Engine Applying EGR

2022-08-30
2022-01-1027
Rapidly depleting oil reserves and strict pollution regulations have made it necessary to find a substitute for diesel fuel. In the context of the multi-fuel strategy program, gasoline has improved the fuel availability for both combat and commercial highway vehicles with diesel engines. This study examines the effect of gasoline fuel on the engine wear, performance, and emission of a military, heavy-duty, supercharged diesel engine. In a CIDI diesel engine, the use of Gasoline has been considered to be significantly sustainable with engine performance and reduced pollutants. For this research a military heavy-duty, 38.8 L, 585kW, diesel engine, the EGR technique was used for gasoline and diesel fuels. Furthermore, the impact of nanoparticles on NOx emissions was also explored. NOx emission reduces in diesel engines by using the EGR technique. Two test fuels were tested in their trials for a total of 100 hours of engine endurance assessment.
X