Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Future Challenges for Engine Manufacturers in View of Future Emissions Legislation

2017-05-10
2017-01-1923
Countries around the world are expected to continue to adopt more stringent emissions standards for heavy-duty markets for both oxides of nitrogen (NOx) and greenhouse gases (GHG). While there is uncertainty about the timing and extent of these regulations, it is clear that significant reductions will be required to address urban air pollution and climate change concerns. The rate and pace of technology evolution and how it will affect the energy pathways for commercial transportation and industrial use are dependent on multiple variables such as national energy and environmental policies and public-private partnerships. Although it adds complexity, the engine system has great potential to evolve as it continues to be highly integrated into the super system for which it is producing power. This paper examines the potential opportunities and challenges for engine manufacturers to continue to be the supplier of power to vehicles and equipment of the future.
Technical Paper

Analysis Lead Drivability Assessment

2015-09-29
2015-01-2804
Drivability and powertrain refinement continue to gain importance in the assessment of overall vehicle quality. This notion has transcended its light duty origins and is beginning to gain considerable traction in the medium and heavy duty markets. However, with drivability assessment and refinement also comes the high costs associated with vehicle testing, including items such as test facilities, prototype component evaluation, fuel and human resources. Taking all of this into account, any and all measures must be used to reduce the cost of drivability evaluation and powertrain refinement. This paper describes an analysis based co-simulation methodology, where sophisticated powertrain simulation and objective drivability evaluation tools can be used to predict vehicle drivability. A fast running GT power engine model combined with simplified controls representation in Matlab/Simulink was used to predict engine transients and responses.
Journal Article

Model-Based Approaches in Developing an Advanced Aftertreatment System: An Overview

2019-01-15
2019-01-0026
Cummins has recently launched next-generation aftertreatment technology, the Single ModuleTM aftertreatment system, for medium-duty and heavy-duty engines used in on-highway and off-highway applications. Besides meeting EPA 2010+ and Euro VI regulations, the Single ModuleTM aftertreatment system offers 60% volume and 40% weight reductions compared to current aftertreatment systems. In this work, we present model-based approaches that were systematically adopted in the design and development of the Cummins Single ModuleTM aftertreatment system. Particularly, a variety of analytical and experimental component-level and system-level validation tools have been used to optimize DOC, DPF, SCR/ASC, as well as the DEF decomposition device.
X