Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

CFD Correlation with Wind-Tunnel for Dry Van Trailer Aerodynamic Devices

2016-09-27
2016-01-8016
The primary purpose of this paper is to correlate the CFD simulations performed using PowerFLOW, a Lattice Boltzmann based method, and wind tunnel tests performed at a wind tunnel facility on 1/8th scaled tractor-trailer models. The correlations include results using an aerodynamic-type tractor paired with several trailer configurations, including a baseline trailer without any aerodynamic devices as well as combinations of trailer side skirts and a tractor-trailer gap flow management device. CFD simulations were performed in a low blockage open road environment at full scale Reynolds number to understand how the different test environments impact total aerodynamic drag values and performance deltas between trailer aerodynamic devices. There are very limited studies with the Class-8 sleeper tractor and 53ft long trailer comparing wind tunnel test and CFD simulation with and without trailer aerodynamic device. This paper is to fill this gap.
Journal Article

Characterization of Aerodynamic Design Spaces for Adjustable Tractor Surfaces

2016-09-27
2016-01-8147
Trailer positioning plays a significant role in the overall aerodynamics of a tractor-trailer combination and varies widely depending on configuration and intended use. In order to minimize aerodynamic drag over a range of trailer positions, adjustable aerodynamic devices may be utilized. For maximum benefit, it is necessary to determine the optimal position of the aerodynamic device for each trailer position. This may be achieved by characterizing a two-dimensional design space consisting of trailer height and tractor-trailer gap length, with aerodynamic drag as the response. CFD simulations carried out using a Lattice-Boltzmann based method were coupled with modeFRONTIER for the creation of multiple Kriging Response Surfaces. Simulations were carried out in multiple phases, allowing for the generation of intermediate response surfaces to estimate predictive error and track response surface convergence.
Journal Article

Evaluation and Optimization of Aerodynamic and Aero-Acoustic Performance of a Heavy Truck using Digital Simulation

2011-04-12
2011-01-0162
The engineering process in the development of commercial vehicles is facing more and more stringent emission regulations while at the same time the market demands for better performance but with lower fuel consumption. The optimization of aerodynamic performance for reduced drag is a key element for achieving related performance targets. Closely related to aerodynamics are wind noise and cabin soiling and both of them are becoming more and more important as a quality criterion in many markets. This paper describes the aerodynamic and aero-acoustic performance evaluation of a Dongfeng heavy truck using digital simulation based on a LBM approach. It includes a study for improving drag within the design of a facelift of the truck. A soiling analysis is performed for each aerodynamic result by calculating the accumulation of particles emitted form the wheels on the cabin. One of the challenges in the development process of trucks is that different cabin types have to be designed.
Technical Paper

Aerodynamic Simulations of a Class 8 Heavy Truck: Comparison to Wind Tunnel Results and Investigation of Blockage Influences

2007-10-30
2007-01-4295
The accuracy of the Lattice-Boltzmann based simulation method for prediction of aerodynamic drag on a heavy truck was evaluated by comparing results to twenty percent scale model wind tunnel measurements from the University of Washington Aeronautical Laboratory (UWAL). A detailed preproduction Kenworth T2000 tractor trailer was used as the scale model. The results include a comparison of normalized drag between simulation and wind tunnel as well as percentage drag change with the addition of a radius to the rear edge of the trailer. Significant effort was involved to model all of the wind tunnel details affecting the tractor-trailer drag. These are discussed along with the results of additional simulations which were performed to study the impact of the UWAL tunnel geometry relative to a tunnel with the same blockage and constant cross-sectional area, and a case with negligible blockage.
Technical Paper

Aerodynamic Simulations of a Generic Tractor-Trailer: Validation and Analysis of Unsteady Aerodynamics

2008-10-07
2008-01-2612
Aerodynamic simulations of a 1:8-scale simplified tractor-trailer, designated as the Generic Conventional Model (GCM), were conducted using a Lattice-Boltzmann based solver. Comparisons were made to experimental measurements from the NASA Ames 12-Foot Pressure Wind Tunnel, including drag coefficients as a function of yaw, static and transient surface pressures, and three-component particle image velocimetry. The baseline model configuration was tested at yaw angles from 0 to 12 degrees, allowing the calculation of the wind-averaged drag coefficient. Results demonstrated that the simulation predicted body-axis drag within experimental uncertainty and also resolved the correct pressure distribution and flow structure in the separated flow regions including the tractor-trailer gap and trailer wake regions. The comparison of the experimental transient pressure spectra showed good agreement with the simulation results, both in magnitude and identification of dominant spectral peaks.
Technical Paper

Aerodynamic Study of a Production Tractor Trailer Combination using Simulation and Wind Tunnel Methods

2010-10-05
2010-01-2040
The importance of fuel economy and emission standards has increased rapidly with high fuel costs and new environmental regulations. This requires analysis techniques capable of designing the next generation long-haul truck to improve both fuel efficiency and cooling. In particular, it is important to have a predictive design tool to assess how exterior design changes impact aerodynamic performance. This study evaluates the use of a Lattice Boltzmann based numerical simulation and the National Research Council (NRC) Canada's wind tunnel to assess aerodynamic drag on a production Volvo VNL tractor-trailer combination. Comparisons are made between the wind tunnel and simulation to understand the influence of wind tunnel conditions on truck aerodynamic performance. The production VNL testing includes a full range of yaw angles to demonstrate the influence of cross wind on aerodynamic drag.
Technical Paper

Thermal Design Evaluation of Construction Vehicles using a Simulation Based Methodology

2015-09-29
2015-01-2888
Design and evaluation of construction equipments and vehicles in the construction industry constitute a very important but expensive and time consuming part of the engineering process on account of large number of variants of prototypes and low production volumes associated with each variant. In this article, we investigate an alternative approach to the hardware testing based design process by implementing a Computational Fluid Dynamics (CFD) simulation based methodology that has the potential to reduce the cost and time of the entire design process. The simulation results were compared with test data and good agreement was observed between test data and simulation.
Technical Paper

The Aerodynamic Development of a New Dongfeng Heavy Truck

2015-09-29
2015-01-2886
The development of a new Dongfeng Heavy truck had very strict targets for fuel consumption. As the aerodynamic drag plays a crucial role for the fuel consumption, a low drag value had to be achieved. It was therefore essential to include evaluation and optimization of the aerodynamics in the development process. Because wind tunnel facilities were not available, the complete aerodynamics development was based on digital simulation. The major portion of the aerodynamic optimization was carried out during the styling phase where mirrors, sun visor, front bumper and aero devices were optimized for drag reduction. For optimizing corner vanes and mud guards, self-soiling from the wheel spray was included in the analysis. The aero results did also show that cooling air flow rates are sufficiently high to ensure proper cooling. During the detailed engineering phase an increase of the drag above the target required further optimization work to finally reach the target.
Technical Paper

Improved CFD Methodology for Class 8 Tractor-Trailer Coastdown Correlation

2013-09-24
2013-01-2412
Recent regulations on greenhouse gas (GHG) emission standards for heavy duty vehicles have prompted government agencies to standardize procedures to assess aerodynamic performance of Class 8 tractor-trailers. The coastdown test procedure is the primary reference method to assess vehicle drag and other valid alternatives include wind tunnel testing and computational fluid dynamics (CFD) simulations. While there have been many published studies comparing results between simulations and wind tunnel testing, it is less well understood how to compare results with coastdown testing. Both the wind tunnel and simulation directly measure aerodynamic drag forces in controlled conditions, while coastdown testing is conducted in an open road environment, aerodynamic forces are calculated from a road load equation, and variable wind and vehicle speed introduce additional complexity.
Technical Paper

Validation Studies for an Advanced Aerodynamic Development Process of Cab-Over Type Heavy Trucks

2017-10-25
2017-01-7009
The implementation of an advanced process for the aerodynamic development of cab-over type heavy trucks at China FAW Group Corporation (FAW) requires a rigorous validation of the tools employed in this process. The final objective of the aerodynamic optimization of a heavy truck is the reduction of the fuel consumption. The aerodynamic drag of a heavy truck contributes up to 50% of the overall resistance and thus fuel consumption. An accurate prediction of the aerodynamic drag under real world driving conditions is therefore very important. Tools used for the aerodynamic development of heavy trucks include Computational Fluid Dynamics (CFD), wind tunnels and track and road testing methods. CFD and wind tunnels are of particular importance in the early phase development.
Journal Article

Aerodynamic Optimization of Trailer Add-On Devices Fully- and Partially-Skirted Trailer Configurations

2015-09-29
2015-01-2885
As part of the United States Department of Energy's SuperTruck program, Volvo Trucks and its partners were tasked with demonstrating 50% improvement in overall freight efficiency for a tractor-trailer, relative to a best in class 2009 model year truck. This necessitated that significant gains be made in reducing aerodynamic drag of the tractor-trailer system, so trailer side-skirts and a trailer boat-tail were employed. A Lattice-Boltzmann based simulation method was used in conjunction with a Kriging Response Surface optimization process in order to efficiently describe a design space of seven independent parameters relating to boat-tail and side-skirt dimensions, and to find an optimal configuration. Part 1 concerns a fully-skirted tractor-trailer system, and consists of an initial phase of optimization, followed by a mid-project re-evaluation of constraints, and an additional period of optimization.
Journal Article

Aerodynamic Drag and Engine Cooling Effects on Class 8 Trucks in Platooning Configurations

2015-09-29
2015-01-2896
The increasing importance of reducing greenhouse gas emissions and the ongoing evolution of vehicle-to-vehicle connectivity technologies have generated significant interest in platooning for commercial vehicles, where two or more vehicles travel in same traffic lane in relatively close proximity. This paper examines the effect of platooning on four increasingly aerodynamic tractor-trailer configurations, using a Lattice Boltzmann based CFD solver. Each platoon consisted of three identical tractor-trailer configurations traveling in the same lane at 65mph. Two different vehicle to vehicle gaps were studied, 5m and 9m, in addition to singleton (solitary) vehicles, representing an effectively infinite gap. Aerodynamic drag for the lead, middle, and trailing vehicle in the platooning configurations were compared to the corresponding single vehicle tractor-trailer configuration.
X