Refine Your Search

Topic

Search Results

Viewing 1 to 9 of 9
Technical Paper

“Dynamic Analysis of Cabin Tilting System of Heavy Trucks Using ADAMS-View for Development of a Software Interface for Optimization”

2008-10-07
2008-01-2683
Design of a Cabin Tilting System of heavy trucks, a multi degree of freedom mechanism, is a challenge. Factors like adequate tilting angle, cabin styling, packaging, non interference of tilting system with ride comfort, forces in the system, specifications of the hydraulic system, are all very important for designing the system. Numerous considerations make the design process highly iterative hence longer design time. This paper primarily focuses on Kinematics and Dynamic analysis of the system in ADAMS and validation of system with real time testing results. Intention of this work is to make a parametric ADAMS model and link it to a Knowledge Based Engineering application to facilitate designer to quickly carry out design iterations for reducing development time. The Knowledge Based Engineering software is made using object oriented language called ‘Object Definition Language’ which has been developed using C and C++ software languages.
Technical Paper

Hill Start Assistance Developed for Buses Equipped with AMT

2016-04-05
2016-01-1111
The AMT (Automated Manual Transmission) has attracted increasing interest of automotive researches, because it has some advantages of both MT (Manual Transmission) and AT (Automatic Transmission), such as low cost, high efficiency, easy to use and good comfort. The hill-start assistance is an important feature of AMT. The vehicle will move backward, start with jerk, or cause engine stalling if failed on the slope road. For manual transmission, hill-start depends on the driver's skills to coordinate with the brake, clutch and throttle pedal to achieve a smooth start. However, with the AMT, clutch pedal is removed and therefore, driver can’t perceive the clutch position, making it difficult to hill-start with AMT without hill-start control strategy. This paper discussed about the hill start control strategy and its functioning.
Technical Paper

An Effort to Build Mathematical Model using Time Series Analysis to Aid Steering Auto-Correction in Heavy Commercial Vehicle during High Speed Braking

2015-09-29
2015-01-2763
Steering pull during high speed braking of heavy commercial vehicles possesses a potential danger to the occupants. Even with negligible wheel-to-wheel brake torque variation, steering pull during the high speed braking has been observed. If the steering pull (i.e. steering rotation) is forcibly held at zero degree during high speed braking, the phenomena called axle twist, wheel turn and shock absorber deflection arise. In this work the data have been collected on the mentioned measures with an intention to develop a mathematical model which uses real time data, coming from feedback mechanism to predict the values of the measures in coming moments in order to aid steering system to ‘auto-correct’. Driven by the intention, ‘Time Series Analysis’, a well-known statistical methodology, has been explored to see how suitable it is in building the kind of model.
Technical Paper

Automated Charging Methodology for Fleet Operated EV Buses to Reduce Down Time and Increase Safety at Charging Station

2024-01-16
2024-26-0112
Prime concern for electric vehicle where the application of the vehicle is public transport, is the charging of vehicle and operation of its infrastructure. Such an example of operating the EV buses is under the GCC (gross cost contract) model, with high operation time and comparatively lesser time for charging. It is challenging to meet these requirements. To counter this situation in fleet operated busses it is proposed to adapt an automated charging method which involves minimum man power intervention and automated mechanism to connect & disconnect the charging connectors. This paper proposes an automated pantograph mechanism based method of charging EV buses, meeting requirements as per SAE J3105 & ISO 15118 standards, which would be an ideal way to resolve the current situation.
Technical Paper

A Study on Traction Battery Mounting Arrangements in Different EV Buses

2024-01-16
2024-26-0121
Adaption of EV powertrains in existing vehicle architecture has created many unique challenges in meeting performance, reliability, safety, ease of manufacturing & serviceability at optimum cost. Mounting of large size battery packs in existing vehicle architecture is one of them. Specific energy & the energy density of Lithium ion batteries are very lower compared to Diesel & Petrol, which requires high volume & weight for equivalent energy storage. For movement of many passengers and to ensure sufficient range EV buses typically needs large amount of energy and for storage of same bigger size battery packs are required. These large size batteries directly affect vehicle architecture, seating layout, ease of assembly & serviceability. Moreover the heavy mass of batteries directly influences vehicle dynamics & performance characteristics such as vehicle handling, roll & NVH. The most important consideration in design of EV vehicles in general and buses in specific is safety.
Technical Paper

Hydrogen Refilling Optimizations Through 1-D Simulations for Commercial Vehicles

2024-01-16
2024-26-0176
Fuel cell electric vehicles (FCEVs) and battery electric vehicles are being touted worldwide by the automotive industry and policy makers as the answer to decarbonizing the transportation sector. FCEVs are especially suited for commercial vehicle applications as they offer very short re-fueling times that is comparable to conventional internal combustion engine vehicles. While this is entirely possible there are host of challenges that include safety, that need to be addressed to make short refilling times possible for commercial vehicles where the hydrogen storage requirement is higher (25 kg or more). This is due to the rise in temperature of the hydrogen in the cylinder due to compression and the negative Joule-Thompson coefficient. The SAE J2601 standard limits the safe temperature limit of hydrogen gas in the cylinder to 85 °C during filling.
Technical Paper

A Comparative Analysis and Novel Powertrain Topology for FCEVs, Integrating Ultra-Capacitor and Batteries

2024-01-16
2024-26-0168
This paper addresses challenges in current Fuel Cell Stack Buses and presents a novel Fuel Cell Electric Vehicle Bus (FCEV-Bus) powertrain that combines fuel cells, ultra-capacitors, and batteries to enhance performance and reliability. Existing Fuel Cell Stack Buses struggle with responsiveness, power fluctuations, and cost-efficiency. The FCEV-Bus powertrain uses a Fuel Cell stack as the primary power source, ultra-capacitors for quick power response, and batteries for addressing power variations. Batteries also save costs in certain cases. This combination optimizes power management, improves system efficiency, and extends the FCEV-Bus's operational life. In conclusion, this paper offers an innovative solution to overcome traditional fuel cell system limitations, making FCEV-Buses more efficient and reliable for potential wider adoption.
Technical Paper

Development of Advanced Signal Analysis Technique for Pass-by Noise Source Identification of Light Commercial Vehicle

2024-01-16
2024-26-0201
The auto industry is one of the major contributors for noise pollution in urban areas. Specifically, highly populated heavy commercial diesel vehicle such as buses, trucks are dominant because of its usage pattern, and capacity. This noise is contributed by various vehicle systems like engine, transmission, exhaust intake, tires etc. When the pass by noise levels exceeds regulatory limit, as per IS 3028, it is important for NVH automotive engineer to identify the sources & their ranking for contribution in pass by noise. The traditional methods of source identification such as windowing technique, sequential swapping of systems and subsystems which are time consuming.Also advanced method in which data acquisition with a synchronizing technology like telemetry or Wi-Fi for source ranking are effective for correctness.However they are time and resource consuming, which can adversely impact product development timeline.
Technical Paper

Estimation of Gear Utilization and Durability Test Specifications through Virtual Road Torque Data Collection for Light Commercial Vehicles

2024-01-16
2024-26-0257
The automotive world is rapidly moving towards achieving shorter lead time using high-end technological solutions by keeping up with day-to-day advancements in virtual testing domain. With increasing fidelity requirements in test cases and shorter project lead time, the virtual testing is an inevitable solution. This paper illustrates method adopted to achieve best approximation to emulate driver behavior with 1-D (one dimensional) simulation based modeling approach. On one hand, the physical testing needs huge data collection of various parameters using sensors mounted on the vehicle. The vehicle running on road provides the real time data to derive durability test specifications. One such example includes developing duty cycle for powertrain durability testing using Road Torque Data Collection (RTDC) technique. This involves intense physical efforts, higher set-up cost, frequent iterations, vulnerability to manual errors and causing longer test lead-time.
X