Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

Design and Optimization of the University of Wisconsin's Parallel Hybrid-Electric Sport Utility Vehicle

2002-03-04
2002-01-1211
The University of Wisconsin - Madison FutureTruck Team has designed and built a four-wheel drive, charge sustaining, parallel hybrid-electric sport utility vehicle for entry into the FutureTruck 2001 competition. The base vehicle is a 2000 Chevrolet Suburban. Our FutureTruck is nicknamed the “Moollennium” and weighs approximately 2427 kg. The vehicle uses a high efficiency, 2.5 liter, turbo-charged, compression ignition common rail, direct-injection engine supplying approximately 104 kW of peak power and a three phase AC induction motor that provides an additional 68.5 kW of peak power. This hybrid drivetrain is an attractive alternative to the large displacement V8 drivetrain, as it provides comparable performance with lower emissions and fuel consumption. The PNGV Systems Analysis Toolkit (PSAT) model predicts a Federal Testing Procedure (FTP) urban driving cycle fuel economy of 11.24 km/L (26.43 mpg) with California Ultra Low Emission Vehicle (ULEV) emissions levels.
Technical Paper

Improvements in 3-D Modeling of Diesel Engine Intake Flow and Combustion

1992-09-01
921627
A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation and the intake flow process. Improved and/or new submodels which have been completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops.
Technical Paper

Feature Extraction from Non-Linear Geometric Models in Design-for-Manufacturing

1994-09-01
941672
Automatic manufacturability analysis of injection moldings, sheet metal castings, stampings, forgings, etc., using knowledge-based heuristics depends on shape features, which are abstractions of the three dimensional (3D) geometric model of the parts. Conventional CAD systems do not explicitly contain shape feature information, therefore such information needs to be extracted from them. So far, extraction of shape features has been restricted to models with simple geometric shapes such as planar, cylindrical or conical shapes. Extending shape feature extraction to non-linear geometric models will allow Design For Manufacturability (DFM) analysis of non-linear models. This paper presents an approach to extract features from non-linear geometric models. The approach is based on abstract geometric entities called C-loops. The formation of a C-loop depends on a geometric entity called a silhouette. The C-loops are derived from the silhouette boundaries of an object.
Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
X