Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Field Evaluation of Biodiesel (B20) Use by Transit Buses

2009-10-06
2009-01-2899
The objective of this research project was to compare B20 (20% biodiesel fuel) and ultra-low-sulfur (ULSD) diesel-fueled buses in terms of fuel economy, vehicle maintenance, engine performance, component wear, and lube oil performance. We examined 15 model year (MY) 2002 Gillig 40-foot transit buses equipped with MY 2002 Cummins ISM engines. The engines met 2004 U.S. emission standards and employed exhaust gas recirculation (EGR). For 18 months, eight of these buses operated exclusively on B20 and seven operated exclusively on ULSD. The B20 and ULSD study groups operated from different depots of the St. Louis (Missouri) Metro, with bus routes matched for duty cycle parity. The B20- and ULSD-fueled buses exhibited comparable fuel economy, reliability (as measured by miles between road calls), and total maintenance costs. Engine and fuel system maintenance costs were also the same for the two groups after correcting for the higher average mileage of the B20 group.
Journal Article

Effect of Drying Methods on the Physical and Structural Changes in Oil-Seed Flax Fiber

2010-10-05
2010-01-2024
With the growing environmental concerns, biodegradable materials are gaining more importance. Biocomposites which are made from a combination of biological fiber such as flax and hemp together with plastics are finding a good number of applications in day to day life. Flax has good physical and mechanical properties that can be utilized in areas like construction, biomedical & bioproducts and electronics applications. The quality of fiber depends upon various unit operations used in the processing. Drying is one of the most important unit operations which significantly affect the quality of the fiber. The method of drying for removal of moisture from the fiber significantly affects the drying time and quality. In the present study the raw flax fiber was subjected to drying before and after chemical treatment. The physical properties such as; tensile strength, color and structural changes were measured for raw and chemically treated flax fibers.
Journal Article

Impact of Fiber Loading on Injection Molding Processing Parameter and Properties of Biocomposite

2010-10-05
2010-01-2026
The research on using natural fibres as the reinforcement in plastic composites has increased dramatically in the last few years. Flax fibres are renewable resources with low specific mass, reduced energy consumption, and relatively low in cost. These advantages make flax fibres recognized as a potential replacement for glass fibres in composites. Among plastic, polyethylene was concluded to be a suitable material used as matrix in natural fibre reinforced biocomposites. However there are few studies on this area so far. In this paper, the processing method of flax fibre-reinforced polyethylene biocomposites is introduced. Flax fibre polyethylene biocomposite consists of flax fibre as the reinforcing component and high density polyethylene as the matrix. Acrylic acid pre-treatment was applied to flax fibre to improve the bonding between fibre and polyethylene.
Journal Article

Analysis of EGR Effects on the Soot Distribution in a Heavy Duty Diesel Engine using Time-Resolved Laser Induced Incandescence

2010-10-25
2010-01-2104
The soot distribution as function of ambient O₂ mole fraction in a heavy-duty diesel engine was investigated at low load (6 bar IMEP) with laser-induced incandescence (LII) and natural luminosity. A Multi-YAG laser system was utilized to create time-resolved LII using 8 laser pulses with a spacing of one CAD with detection on an 8-chip framing camera. It is well known that the engine-out smoke level increases with decreasing oxygen fraction up to a certain level where it starts to decrease again. For the studied case the peak occurred at an O₂ fraction of 11.4%. When the oxygen fraction was decreased successively from 21% to 9%, the initial soot formation moved downstream in the jet. At the lower oxygen fractions, below 12%, no soot was formed until after the wall interaction. At oxygen fractions below 11% the first evidence of soot is in the recirculation zone between two adjacent jets.
Journal Article

Systems to Silicon: A Complete System Approach to Power Semiconductor Selection for Environmentally Friendly Vehicles

2010-10-05
2010-01-1989
A complete system approach to power semiconductor analysis and selection is set forth in this paper. In order to address design overkill, a suitable power profile across the desired drive schedule is obtained through vehicle simulation in lieu of worse case operating conditions. The representative profile is then applied to detailed models of the inverter, power device, and power device thermal stack-up in order to predict worse case, silicon junction temperature rise. The simulation stream includes a closed silicon thermal loop that leads to more accurate power loss and junction temperature calculations. The models are combined and exercised in a single platform for ease of integration and fast simulation. Herein, the methods will be applied to a working example of an inverter for motor drives, and analytical results will be reviewed.
Journal Article

A Sequence Retainable Iterative Algorithm for Rainflow Cycle Counting

2014-01-15
2013-01-9091
To get a sequence retainable rainflow cycle counting algorithm for fatigue analysis, an alternate equivalent explanation to rainflow cycle counting is introduced, based on which an iterative rainflow counting algorithm is proposed. The algorithm decomposes any given load-time history with more than one crest into three sub-histories by two troughs; each sub-history with more than one crest is iteratively decomposed into three shorter sub-histories, till each sub-history obtained contains only one single or no crest. Every sub-history that contains a single crest corresponds to a local closed (full) cycle. The mean load and alternate load component of the local cycle are calculated in parallel with the iterative procedure.
Journal Article

Components Durability, Reliability and Uncertainty Assessments Based on Fatigue Failure Data

2014-09-30
2014-01-2308
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings.
Journal Article

An Analysis of Lubricating Gap Flow in Radial Piston Machines

2014-09-30
2014-01-2407
Radial piston units find several applications in fluid power, offering benefits of low noise and high power density. The capability to generate high pressures makes radial piston pumps suitable for clamping function in machine tools and also to operate presses for sheet metal forming. This study is aimed at developing a comprehensive multidomain simulation tool to model the operation of a rotating cam type radial piston pump, with particular reference to the lubricating gap flow between the pistons and the cylinder block. The model consists of a first module which simulates the main flow through the unit according to a lumped parameter approach. This module evaluates the features of the displacing action accounting for the detailed evaluation of the machine kinematics and for the mechanical dynamics of the check valves used to control the timing for the connection of each piston chamber with the inlet and outlet port.
Journal Article

Effects of Charge Motion, Compression Ratio, and Dilution on a Medium Duty Natural Gas Single Cylinder Research Engine

2014-09-30
2014-01-2363
Recent advances in natural gas (NG) recovery technologies and availability have sparked a renewed interest in using NG as a fuel for commercial vehicles. NG can potentially provide both reduced operating cost and reductions in CO2 emissions. Commercial NG vehicles, depending on application and region, have different performance and fuel consumption targets and are subject to various emissions regulations. Therefore, different applications may require different combustion strategies to achieve specific targets and regulations. This paper summarizes an evaluation of combustion strategies and parameters available to meet these requirements while using NG in a spark ignited engine. A single-cylinder research engine using a modified diesel cylinder head was employed for this study. Both stoichiometric combustion with cooled exhaust gas recirculation (EGR) and lean-burn were evaluated.
Journal Article

Experimental Investigation of Heat Transfer Rate and Pressure Drop through Angled Compact Heat Exchangers Relative to the Incoming Airflow

2014-09-30
2014-01-2337
This paper presents pressure drops and heat transfer rates for compact heat exchangers, where the heat exchangers are angled 90°, 60°, 30° and 10° relative to the incoming airflow. The investigation is based on three heat exchangers with thicknesses of 19mm and 52mm. Each heat exchanger was mounted in a duct, where it was tested for thermal and isothermal conditions. The inlet temperature of the coolant was defined to two temperatures; ambient temperature and 90°C. For the ambient cases the coolant had the same temperature as the surrounding air, these tests were performed for five airflow rates. When the coolant had a temperature of 90°C a combination of five coolant flow rates and five airflow rates were tested. The test set-up was defined as having a constant cross-section area for 90°, 60° and 30° angles, resulting in a larger core area and a lower airspeed through the core, for a more inclined heat exchanger.
Journal Article

Ride Optimization for a Heavy Commercial Vehicle

2014-04-01
2014-01-0843
The ride comfort of the commercial vehicle is mainly affected by several vibration isolation systems such as the primary suspension system, engine mounting system and the cab mounting system. A rigid-flexible coupling model for the truck was built and analyzed in multi-body environment (ADAMS). The method applying the excitation on the wheels center and the engine mountings in time domain was presented. The variables' effects on the ride performance were studied by design of experiment (DOE). The optimal design was obtained by the co-simulation of the ADAMS/View, iSIGHT and Matlab. It was found that the vertical root mean square (RMS) acceleration and frequency-weighted RMS acceleration on the seat track were reduced about 17% and 11% respectively at different speeds relative to baseline according to ISO 2631-1.
Journal Article

Microstructural Contact Mechanics Finite Element Modeling Used to Study the Effect of Coating Induced Residual Stresses on Bearing Failure Mechanisms

2014-04-01
2014-01-1018
Coatings have the potential to improve bearing tribological performance. However, every coating application process and material combination may create different residual stresses and coating microstructures, and their effect on bearing fatigue and wear performance is unclear. The aim of this work is to investigate coating induced residual stress effects on bearing failure indicators using a microstructural contact mechanics (MSCM) finite element (FE) model. The MSCM FE model consists of a two-dimensional FE model of a coated bearing surface under sliding contact where individual grains are represented by FE domains. Interactions between FE domains are represented using contact element pairs. Unique to this layered rolling contact FE model is the use of polycrystalline material models to represent realistic bearing and coating microstructural behavior. The MSCM FE model was compared to a second non-microstructural contact mechanics (non-MSCM) model.
Journal Article

Numerical Study of the Influence of EGR on In-Cylinder Soot Characteristics in a Heavy-Duty Diesel Engine using CMC

2014-04-01
2014-01-1134
This paper presents numerical simulations of in-cylinder soot evolution in the optically accessible heavy-duty diesel engine of Sandia Laboratories performed with the conditional moment closure (CMC) model employing a reduced n-heptane chemical mechanism coupled with a two-equation soot model. The influence of exhaust gas recirculation (EGR) on in-cylinder processes is studied considering different ambient oxygen volume fractions (8 - 21 percent), while maintaining intake pressure and temperature as well as the injection configuration unchanged. This corresponds to EGR rates between 0 and 65 percent. Simulation results are first compared with experimental data by means of apparent heat release rate (AHRR) and temporally resolved in-cylinder soot mass, where a quantitative comparison is presented. The model was found to fairly well reproduce ignition delays as well as AHRR traces along the EGR variation with a slight underestimation of the diffusion burn portion.
Journal Article

Development of Dual-Fuel Low Temperature Combustion Strategy in a Multi-Cylinder Heavy-Duty Compression Ignition Engine Using Conventional and Alternative Fuels

2013-09-24
2013-01-2422
Low temperature combustion through in-cylinder blending of fuels with different reactivity offers the potential to improve engine efficiency while yielding low engine-out NOx and soot emissions. A Navistar MaxxForce 13 heavy-duty compression ignition engine was modified to run with two separate fuel systems, aiming to utilize fuel reactivity to demonstrate a technical path towards high engine efficiency. The dual-fuel engine has a geometric compression ratio of 14 and uses sequential, multi-port-injection of a low reactivity fuel in combination with in-cylinder direct injection of diesel. Through control of in-cylinder charge reactivity and reactivity stratification, the engine combustion process can be tailored towards high efficiency and low engine-out emissions. Engine testing was conducted at 1200 rpm over a load sweep.
Journal Article

Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations

2013-09-24
2013-01-2421
With increasing energy prices and concerns about the environmental impact of greenhouse gas (GHG) emissions, a growing number of national governments are putting emphasis on improving the energy efficiency of the equipment employed throughout their transportation systems. Within the U.S. transportation sector, energy use in commercial vehicles has been increasing at a faster rate than that of automobiles. A 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected from 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. and global economies.
Journal Article

Sample Size Reduction Based on Historical Design Information and Bayesian Statistics

2013-09-24
2013-01-2440
Numerous test data have been generated in many testing institutions over the years and the historical information from previous similar designs and operating conditions can shed light on the current and future designs since they would share some common features when the changes are not drastic. To effectively utilize the historical information for current and future designs, two steps are necessary: (1) finding an approach to consistently correlate the test data; (2) utilizing Bayesian statistics, which can provide a rigorous mathematical tool for extracting useful information from the historical data. In this paper, a procedure for test sample size reduction is proposed based on historical fatigue S-N test data and Bayesian statistics. First, the statistical information is extracted from a large amount of fatigue test data collected over the years.
Journal Article

Dynamic Analysis of an Excavator During Digging Operation

2013-09-24
2013-01-2410
Researches for automation of hydraulic excavators have been conducted for laborsaving, improved efficiency of operations and increased worker's safety improvement. Authors' final goal is to develop automatic digging system which can realize the high efficiency. Therefore, it is thought that appropriate digging control algorithm is important for the automation. For this goal, this paper shows a dynamics model of the backhoe excavator and simulations using such models. Detailed dynamic models are needed from the point of view of the control engineering. Authors evaluate effectiveness of automatic digging algorithm by simulation models. In this research, the linkage mechanism which contains the closed loops is modeled based on the Newton-Euler formulation, where motion equation is derived. Moreover, we apply a soil model for simulation, based on the two dimensional distinct element method (DEM), in order to reproduce reaction force from grounds.
Journal Article

Digging Trajectory Optimization by Soil Models and Dynamics Models of Excavator

2013-09-24
2013-01-2411
Researches for automated construction machinery have been conducted for labor-saving, improved work efficiency and worker's safety, where a tracking control function was proposed as one of the key control system strategies for highly automated productive hydraulic excavators. An optimized digging trajectory that assures as much soils scooped as possible and less energy consumption is critical for an automated hydraulic excavator to improve work efficiency. Simulation models that we used to seek an optimized digging trajectory in this study consist of soil models and front linkage models of a hydraulic excavator. We developed two types of soil models. One is called wedge models used to calculate reaction forces from soils acting on a bucket during digging operation, based on the earth pressure theory. The other is called Distinct Element Method (DEM) model used to analyze soil behaviors and estimate amounts of soils scooped and reaction forces quantitatively.
Journal Article

Improvement of Fuel Consumption of Neat Biofuel Diesel Engine with Reduced Injection Driving Torque

2013-09-24
2013-01-2475
In recent years, trans-esterified vegetable oils have been widely applied to diesel engine in order to suppress greenhouse gas emissions. However, “neat” vegetable oils are expected to be directly used to resolve some difficulties faced in their use, such high viscosity and slightly high fuel consumption. In this study neat linseed oil has been investigated as a neat vegetable oil. It was found to show higher fuel consumption than diesel fuel, however at the same time it showed lower indicated fuel consumption than diesel fuel. These results suggest some increase in engine friction loss in a neat biofuel diesel engine. Studies have been extensively investigated the difference in friction loss and a newly developed “improved deceleration method” has been applied.
Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
X