Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Effect of Drying Methods on the Physical and Structural Changes in Oil-Seed Flax Fiber

2010-10-05
2010-01-2024
With the growing environmental concerns, biodegradable materials are gaining more importance. Biocomposites which are made from a combination of biological fiber such as flax and hemp together with plastics are finding a good number of applications in day to day life. Flax has good physical and mechanical properties that can be utilized in areas like construction, biomedical & bioproducts and electronics applications. The quality of fiber depends upon various unit operations used in the processing. Drying is one of the most important unit operations which significantly affect the quality of the fiber. The method of drying for removal of moisture from the fiber significantly affects the drying time and quality. In the present study the raw flax fiber was subjected to drying before and after chemical treatment. The physical properties such as; tensile strength, color and structural changes were measured for raw and chemically treated flax fibers.
Journal Article

Impact of Fiber Loading on Injection Molding Processing Parameter and Properties of Biocomposite

2010-10-05
2010-01-2026
The research on using natural fibres as the reinforcement in plastic composites has increased dramatically in the last few years. Flax fibres are renewable resources with low specific mass, reduced energy consumption, and relatively low in cost. These advantages make flax fibres recognized as a potential replacement for glass fibres in composites. Among plastic, polyethylene was concluded to be a suitable material used as matrix in natural fibre reinforced biocomposites. However there are few studies on this area so far. In this paper, the processing method of flax fibre-reinforced polyethylene biocomposites is introduced. Flax fibre polyethylene biocomposite consists of flax fibre as the reinforcing component and high density polyethylene as the matrix. Acrylic acid pre-treatment was applied to flax fibre to improve the bonding between fibre and polyethylene.
Journal Article

Systems to Silicon: A Complete System Approach to Power Semiconductor Selection for Environmentally Friendly Vehicles

2010-10-05
2010-01-1989
A complete system approach to power semiconductor analysis and selection is set forth in this paper. In order to address design overkill, a suitable power profile across the desired drive schedule is obtained through vehicle simulation in lieu of worse case operating conditions. The representative profile is then applied to detailed models of the inverter, power device, and power device thermal stack-up in order to predict worse case, silicon junction temperature rise. The simulation stream includes a closed silicon thermal loop that leads to more accurate power loss and junction temperature calculations. The models are combined and exercised in a single platform for ease of integration and fast simulation. Herein, the methods will be applied to a working example of an inverter for motor drives, and analytical results will be reviewed.
Journal Article

Electromagnetic Actuator Dynamic Response Prediction for an Automated Mechanical Transmission

2013-05-15
2012-01-2260
Among the many advantages of the hybrid variants of Automated Mechanical Transmissions (AMTs) such as the Dual Clutch Transmission are faster gearshifts and excellent acceleration that comes from reduced drive-train losses without torque interrupts which translates into improved drive quality through smoother shifts. However, actuator system dynamics and controls remain critical challenges to attaining the full benefits of such AMT variants, which demands precise timing and coordination of the actuators. This paper presents a method for modeling a solenoid, including its non-linear electromagnetic characteristics. The model has been validated against experimental measurements. The significance of the work is that an efficient and robust method that allows precise predictions of a hydraulic valve pressure, flow through the system and the position of the hydraulic elements has been devised.
Journal Article

Gearshift Actuator Dynamics Predictions in a Dual Clutch Transmission

2013-10-20
2013-01-9021
Although hybrid variants of Automated Mechanical Transmissions such as the Dual Clutch Transmissions are less affected by driveline torque interrupts, actuator dynamics is very critical in the speed of gear pre-selection and during multiple gear shifts. To avoid torque interrupts, such systems require precise gearshift duration hence the actuators are expected to have fast, stable and predictable responses. However, actuator dynamics and controls remain barriers to attaining the full benefits of such complex systems, demanding precise timing and coordination of the gearshifts alongside the clutches engagement and disengagement. To overcome such challenges, a dynamic model of an electro-hydraulic gearshift actuator, the synchronizer and the shift fork has been developed. The model predicts the gearshift actuator dynamics for a given set of input parameters, which can be correlated against experimental data.
Journal Article

A Sequence Retainable Iterative Algorithm for Rainflow Cycle Counting

2014-01-15
2013-01-9091
To get a sequence retainable rainflow cycle counting algorithm for fatigue analysis, an alternate equivalent explanation to rainflow cycle counting is introduced, based on which an iterative rainflow counting algorithm is proposed. The algorithm decomposes any given load-time history with more than one crest into three sub-histories by two troughs; each sub-history with more than one crest is iteratively decomposed into three shorter sub-histories, till each sub-history obtained contains only one single or no crest. Every sub-history that contains a single crest corresponds to a local closed (full) cycle. The mean load and alternate load component of the local cycle are calculated in parallel with the iterative procedure.
Journal Article

Components Durability, Reliability and Uncertainty Assessments Based on Fatigue Failure Data

2014-09-30
2014-01-2308
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings.
Journal Article

Multiphase Drag Modeling for Prediction of the Drag Torque Characteristics in Disengaged Wet Clutches

2014-09-30
2014-01-2333
The undesired Drag Torque (DT) which is developed due to the shearing of fluid film in between the disk and separator plate reduces the efficiency of a transmission and increases the fuel consumption of a car. In order to minimize the transmission loss, the physics of the fluid flow mechanism inside the clutch should be understood well and the factors influencing the DT should be identified. In this paper, a model is proposed to predict the drag torque of a disengaged wet clutch at different rotation speeds, clearances, disk sizes and oil temperatures. The model explains well how the DT changes for the no groove disk, grooved disk and different ATF properties. The proposed model is validated by several experimental results conducted by a visualization tester and images of the fluid film taken during the test. Results show that there is a good degree of agreement between the DT trends derived from the proposed model and the test results for the same condition.
Journal Article

Microstructural Contact Mechanics Finite Element Modeling Used to Study the Effect of Coating Induced Residual Stresses on Bearing Failure Mechanisms

2014-04-01
2014-01-1018
Coatings have the potential to improve bearing tribological performance. However, every coating application process and material combination may create different residual stresses and coating microstructures, and their effect on bearing fatigue and wear performance is unclear. The aim of this work is to investigate coating induced residual stress effects on bearing failure indicators using a microstructural contact mechanics (MSCM) finite element (FE) model. The MSCM FE model consists of a two-dimensional FE model of a coated bearing surface under sliding contact where individual grains are represented by FE domains. Interactions between FE domains are represented using contact element pairs. Unique to this layered rolling contact FE model is the use of polycrystalline material models to represent realistic bearing and coating microstructural behavior. The MSCM FE model was compared to a second non-microstructural contact mechanics (non-MSCM) model.
Journal Article

A Design of Experiments Analysis to Determine the Importance of Relevant Factors on the STL of an Acoustic Part

2013-05-13
2013-01-2009
This paper discusses a design of experiments (DOE) analysis that was performed to understand relevant factors that influence the acoustic performance of a sound package part used in the commercial vehicle industry for the floor mat application. The acoustic performance of the sound package part which is a double wall system and constructed of a barrier and cellular decoupler material is expressed in terms of sound transmission loss (STL). An experiment was designed using the Taguchi DOE technique with three factors and three levels to acquire the STL data and is discussed in the paper. The results of the DOE analysis and the confidence in the model are discussed as well as the benefits of predicting expected STL performances are mentioned in the paper.
Journal Article

Sample Size Reduction Based on Historical Design Information and Bayesian Statistics

2013-09-24
2013-01-2440
Numerous test data have been generated in many testing institutions over the years and the historical information from previous similar designs and operating conditions can shed light on the current and future designs since they would share some common features when the changes are not drastic. To effectively utilize the historical information for current and future designs, two steps are necessary: (1) finding an approach to consistently correlate the test data; (2) utilizing Bayesian statistics, which can provide a rigorous mathematical tool for extracting useful information from the historical data. In this paper, a procedure for test sample size reduction is proposed based on historical fatigue S-N test data and Bayesian statistics. First, the statistical information is extracted from a large amount of fatigue test data collected over the years.
Journal Article

Recognition of Operating States of a Wheel Loader for Diagnostics Purposes

2013-09-24
2013-01-2409
In this paper, the operating states of a wheel loader were studied for diagnostics purposes using a real time simulation model of an articulated-frame-steered wheel loader. Test drives were carried out to obtain measurement data, which were then analyzed. The measured time series data were analyzed to find the sequences of operating states using two different data sets, namely the variables of hydrostatic transmission and working hydraulics. A time series is defined as a collection of observations made sequentially in time. In our proposed method, the time series data were first segmented to find operating states. One or more segments build up an operating state. A state is defined as a combination of the patterns of the selected variables. The segments were then clustered and classified. The operating states were further analyzed using the quantization error method to detect anomalies.
Journal Article

Finite Element Analysis of Composite Over-wrapped Pressure Vessels for Hydrogen Storage

2013-09-24
2013-01-2477
This paper presents 3D finite element analysis performed for a composite cylindrical tank made of 6061-aluminum liner overwrapped with carbon fibers subjected to a burst internal pressure of 1610 bars. As the service pressure expected in these tanks is 700 bars, a factor of safety of 2.3 is kept the same for all designs. The optimal design configuration of such high pressure storage tanks includes an inner liner used as a gas permeation barrier, geometrically optimized domes, inlet/outlet valves with minimum stress concentrations, and directionally tailored exterior reinforcement for high strength and stiffness. Filament winding of pressure vessels made of fiber composite materials is the most efficient manufacturing method for such high pressure hydrogen storage tanks. The complexity of the filament winding process in the dome region is characterized by continually changing the fiber orientation angle and the local thickness of the wall.
Journal Article

Shifter Fork Stiffness Correlation to Gear Shift Quality

2013-09-24
2013-01-2447
Shift quality of a manual transmission is a critical characteristic that requires utmost care while structuring the transmission. Shift quality is affected by many factors viz. synchronizer design, shifter design, gear design, transmission oil selection etc. This paper presents a correlation between stiffness of the shift fork in manual transmission with the gear shift quality using a gear shift quality assessment setup. Stiffness of shifter fork is optimized using contact pattern analysis and stiffness analysis on MSC Nastran. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A-5-speed manual transmission is used as an example to illustrate the same. A direct correlation of gear shift fork stiffness with the shift force experienced by the driver is established. The shift system was modeled in the UG NX 6.0 software to collate the synchronization force, shift system gap etc with the constraint on the shift fork.
Journal Article

Experimental Investigation of Factors Affecting Odors Generating from Mobile AC Systems Equipped with Idling-Time Reduction Systems

2015-04-14
2015-01-0359
In last 10 years or so, a number of OEMs are designing vehicles with start-stop function to save energy and to reduce pollution. For these systems, the situations in which air-conditioning systems are used have been changing with a significant increase in adoption of idle-time reduction systems (no idling-system). Blower fan remains operating at idle condition while compressor stops in most cases for these systems. In this case, the air temperature at the vent outlets increases. The increase in the air temperature under range of thermal boundary conditions around the evaporator causes a concern of odor to occur. This paper describes and explains experimental studies on changes in heat and humidity at the air outlets according to the switching operation of compressor and root cause analyses of odor coming from air-conditioning system for vehicles with start-stop function.
Journal Article

Optimization Matching of Powertrain System for Self-Dumping Truck Based on Grey Relational Analysis

2015-04-14
2015-01-0501
In this paper, the performance simulation model of a domestic self-dumping truck was established using AVL-Cruise software. Then its accuracy was checked by the power performance and fuel economy tests which were conducted on the proving ground. The power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, overtaking acceleration time from 60 to 70km/h, maximum speed and maximum gradeability, while the composite fuel consumption per hundred kilometers was taken as an evaluation index of fuel economy. A L9 orthogonal array was applied to investigate the effect of three matching factors including engine, transmission and final drive, which were considered at three levels, on the power performance and fuel economy of the self-dumping truck. Furthermore, the grey relational grade was proposed to assess the multiple performance responses according to the grey relational analysis.
Journal Article

Innovative Design of Tractor for Small and Marginal Farms Mechanisation

2015-01-14
2015-26-0072
Agriculture Tractors are widely used as prime mover either to pull or drive the “Implements” in the farms, apart from custom made equipments like Transplanter, Manure Spreader, Combine Harvester, Cotton Picker, mobile irrigation etc. which are used for particular operations in large production capacities. For larger landholdings, timely completion of the operation within the window period is the major decisive factor that drives agriculture tractor design. For small farms like in India, the productivity requirement was offset by the versatility of the equipment. Also, the farming practice varies in India due to geographical conditions such as soil types and demographic conditions such as crops types. Hence, the mechanisation level of matured market was not yet achieved in India, though the technologies are available for implementation.
Technical Paper

Monitoring Brake Wear with Acoustics

2021-08-31
2021-01-1053
A new approach for detecting problems with vehicle brakes by analyzing sounds emitted during braking events is proposed. Vehicle brakes emit acoustic energy as part of the braking process; the spectra of these sounds are highly dependent on the mechanical condition of the brake and can be used to detect problems. Acoustic theory indicates that as brake linings wear thinner the resonant frequency of the shoe or pad increases, potentially enabling the monitoring of lining wear through passive acoustic sensors. To test this approach, passive acoustic sensors were placed roadside at the exit of a transit bus facility for 9 months. The sensors collected almost 10,000 recordings of a fleet of 160 vehicles braking over a variety of conditions. Spectra of vehicles that had brake work performed during this period were analyzed to compare differences between new and worn friction linings.
Technical Paper

Design and Development of Lightweight Pivot Arm Using Austempered Ductile Iron (ADI) for Heavy Commercial Vehicles

2021-09-22
2021-26-0255
In a current competitive automotive market, weight and cost optimization is the need of an hour. Therefore it is important to explore use of alternative material which has less weight, low manufacturing cost and better strength. This paper presents methodology to achieve cost & weight reduction through use of Austempered Ductile Iron (ADI) instead of alloy forging. ADI casting has lower density, physical properties at par with alloy forgings and lower manufacturing cost. Pivot arm is the one of the critical component of twin axle steering system which transfers the hydraulic torque from steering gearbox to second forward axle via linkage system. In order to design lightweight pivot arm, existing chromium alloy steel material is replaced with the Austempered ductile iron (ADI). Pivot arm is designed and validated digitally as well as bench test and results are found to be meeting cost and weight targets.
Technical Paper

A Comparative Study between Abrasion Techniques to Improve the Adhesion of Rubber and Metal Bond for Commercial Vehicle Applications

2021-09-22
2021-26-0253
Engine mounts are an integral part of the vehicle that helps in reducing the vibrations generated from the engine. Engine mounts require a simple yet complicated amalgamation of two very different materials, steel and rubber. Proper adhesion between the two is required to prevent any part failure. Therefore, it becomes important that a comprehensive study is done to understand the mating phenomenon of both. A good linking between rubber and metal substrate is governed by surface pretreatment. Various methodologies such as mechanical and chemical are adopted for the same. This paper aims to present a comparative study as to which surface pretreatment has an edge over other techniques in terms of separation force required to break the bonding between the two parts. The study also presents a cost comparison between the techniques so that the best possible technique can be put to use in the commercial vehicle industry.
X