Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development of SCR on High Porosity Substrates for Heavy Duty and Off-Road Applications

2014-04-01
2014-01-1521
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as an effective solution for controlling NOx emissions from diesel engines. There is a drive to reduce the overall packaging volume of the aftertreatment system for these applications. In addition, more active SCR catalysts will be needed as the applications become more challenging: e.g. lower temperatures and higher engine out NOx, for fuel consumption improvements. One approach to meet the challenges of reduced volume and/or higher NOx reduction is to increase the active site density of the SCR catalyst by coating higher amount of SCR catalyst on high porosity substrates (HPS). This approach could enable the reduction of the overall packaging volume while maintaining similar NOx conversion as compared to 2010/2013 systems, or improve the NOx reduction performance for equivalent volume and NH3 slip.
Journal Article

Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

2014-09-30
2014-01-2326
Two hybrid powertrain configurations, including parallel and series hybrids, were simulated for fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving conditions. A comprehensive set of component models describing engine fuel consumption, emissions control, battery energy, and accessory power demand interactions was developed and integrated with the simulated hybrid trucks to identify heavy-duty (HD) hybrid technology barriers. The results show that series hybrid is absolutely negative for fuel-economy improvement of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical).
Journal Article

Radio Frequency Diesel Particulate Filter Soot and Ash Level Sensors: Enabling Adaptive Controls for Heavy-Duty Diesel Applications

2014-09-30
2014-01-2349
Diesel Particulate Filters (DPF) are a key component in many on- and off-road aftertreatment systems to meet increasingly stringent particle emissions limits. Efficient thermal management and regeneration control is critical for reliable and cost-effective operation of the combined engine and aftertreatment system. Conventional DPF control systems predominantly rely on a combination of filter pressure drop measurements and predictive models to indirectly estimate the soot loading state of the filter. Over time, the build-up of incombustible ash, primarily derived from metal-containing lubricant additives, accumulates in the filter to levels far exceeding the DPF's soot storage limit. The combined effects of soot and ash build-up dynamically impact the filter's pressure drop response, service life, and fuel consumption, and must be accurately accounted for in order to optimize engine and aftertreatment system performance.
Journal Article

Effects of Charge Motion, Compression Ratio, and Dilution on a Medium Duty Natural Gas Single Cylinder Research Engine

2014-09-30
2014-01-2363
Recent advances in natural gas (NG) recovery technologies and availability have sparked a renewed interest in using NG as a fuel for commercial vehicles. NG can potentially provide both reduced operating cost and reductions in CO2 emissions. Commercial NG vehicles, depending on application and region, have different performance and fuel consumption targets and are subject to various emissions regulations. Therefore, different applications may require different combustion strategies to achieve specific targets and regulations. This paper summarizes an evaluation of combustion strategies and parameters available to meet these requirements while using NG in a spark ignited engine. A single-cylinder research engine using a modified diesel cylinder head was employed for this study. Both stoichiometric combustion with cooled exhaust gas recirculation (EGR) and lean-burn were evaluated.
Journal Article

Comparative Studies between CFD and Wind Tunnel Measurements of Cooling Performance and External Aerodynamics for a Heavy Truck

2014-09-30
2014-01-2443
Nowadays, much focus for vehicle manufacturers is directed towards improving the energy efficiency of their products. The aerodynamic drag constitutes one major part of the total driving resistance for a vehicle travelling at higher speeds. In fact, above approximately 80km/h the aerodynamic drag is the dominating resistance acting on a truck. Hence the importance of reducing this resistance is apparent. Cooling drag is one part of the total aerodynamic drag, which arises from air flowing through the heat exchangers, and the irregular under-hood area. When using Computational Fluid Dynamics (CFD) in the development process it is of great importance to ensure that the methods used are accurately capturing the physics of the flow. This paper deals with comparative studies between CFD and wind-tunnel tests. In this paper, two comparative studies are presented.
Journal Article

A Parametric Assessment of Skirt Performance on a Single Bogie Commercial Vehicle

2013-09-24
2013-01-2415
A Department of Energy funded research project currently in the final stages of completion has resulted in a web-based tool that gives non-expert users the ability to add aerodynamic devices to a CFD model of a single bogie trailer and generalized tractor model. This model was used to assess the aerodynamic performance of skirt geometries. The skirts were defined using 5 independent geometric parameters and 2 installation parameters. These parameters allow enough freedom in the geometry definition to capture the shape and installation position and angle of a wide number of commercially available skirts on the market today. Using a Design of Experiments approach, the aerodynamic drag response of the truck and trailer to any parametric change in the skirt geometry has been determined across a range of yaw angles.
Journal Article

Development of Dual-Fuel Low Temperature Combustion Strategy in a Multi-Cylinder Heavy-Duty Compression Ignition Engine Using Conventional and Alternative Fuels

2013-09-24
2013-01-2422
Low temperature combustion through in-cylinder blending of fuels with different reactivity offers the potential to improve engine efficiency while yielding low engine-out NOx and soot emissions. A Navistar MaxxForce 13 heavy-duty compression ignition engine was modified to run with two separate fuel systems, aiming to utilize fuel reactivity to demonstrate a technical path towards high engine efficiency. The dual-fuel engine has a geometric compression ratio of 14 and uses sequential, multi-port-injection of a low reactivity fuel in combination with in-cylinder direct injection of diesel. Through control of in-cylinder charge reactivity and reactivity stratification, the engine combustion process can be tailored towards high efficiency and low engine-out emissions. Engine testing was conducted at 1200 rpm over a load sweep.
Journal Article

Analysis of Vehicle Lateral Dynamics due to Variable Wind Gusts

2014-09-30
2014-01-2449
This study presents a practical theoretical method to judge the aerodynamic response of buses in the early design stage based on both aerodynamic and design parameters. A constant longitudinal velocity 2-DOF vehicle lateral dynamics model is used to investigate the lateral response of a bus under nine different wind gusts excitations. An appropriate 3-D CFD simulation model of the bus shape results is integrated with carefully chosen design parameters data of a real bus chassis and body to obtain vehicle lateral dynamic response to the prescribed excitations. Vehicle model validity is carried out then, the 2-DOF vehicle lateral dynamics model has been executed in MATLAB Simulink environment with the selected data. Simulation represents the vehicle in a straight ahead path then entered a gusting wind section of the track with a fixed steering wheel. Vehicle response includes lateral deviation (LD), lateral acceleration (LA), yaw angle (YA) and yaw rate (YR).
Journal Article

An In-Cycle based NOx Reduction Strategy using Direct Injection of AdBlue

2014-10-13
2014-01-2817
In the last couple of decades, countries have enacted new laws concerning environmental pollution caused by heavy-duty commercial and passenger vehicles. This is done mainly in an effort to reduce smog and health impacts caused by the different pollutions. One of the legislated pollutions, among a wide range of regulated pollutions, is nitrogen oxides (commonly abbreviated as NOx). The SCR (Selective Catalytic Reduction) was introduced in the automotive industry to reduce NOx emissions leaving the vehicle. The basic idea is to inject a urea solution (AdBlue™) in the exhaust gas before the gas enters the catalyst. The optimal working temperature for the catalyst is somewhere in the range of 300 to 400 °C. For the reactions to occur without a catalyst, the gas temperature has to be at least 800 °C. These temperatures only occur in the engine cylinder itself, during and after the combustion.
Journal Article

Development of Dual Fuel (Diesel-CNG) Engine for SUV Application in India

2015-01-14
2015-26-0058
Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines. A dual fuel (Diesel-CNG) engine is a base diesel engine fitted with a dual fuel conversion kit to enable use of clean burning alternative fuel like compressed natural gas. In this engine diesel and natural gas are burned simultaneously. Natural gas is fed into the cylinder along with intake air; the amount of diesel injection is reduced accordingly. Dual fuel engines have number of potential advantages like fuel flexibility, higher compression ratio, and better efficiency and less modifications on existing diesel engines. It is an ecological friendly technology due to lower PM and smoke emissions and retains the efficiency of diesel combustion.
Technical Paper

Effects of Oxidation Upon Long-term Storage of Karanja Biodiesel on the Combustion and Emission Characteristics of a Heavy-Duty Truck Diesel Engine

2021-09-21
2021-01-1200
The presence of unsaturated methyl esters in biodiesel makes it susceptible to oxidation and fuel quality degradation upon long-term storage. In the present work, the effects of oxidation of Karanja biodiesel upon long-term storage on the combustion and emission characteristics of a heavy-duty truck diesel engine are studied. The Karanja biodiesel is stored for one year in a 200 litres steel barrel at room conditions to mimic commercial storage conditions. The results obtained show that compared to diesel, the start of injection of fresh and aged biodiesels are advanced by ~2-degree crank angle, and the ignition delay time is reduced. Aged biodiesel showed a slightly smaller ignition delay compares to fresh biodiesel. The fuel injection and combustion characteristics of fresh and aged biodiesels were similar at all the load conditions. Both fresh and aged biodiesels produced higher oxides of nitrogen (NOx) and lower smoke emissions compared to diesel.
Technical Paper

Experimentation and Comparison of Engine Performance, NOx Reduction and Nano Particle Emission of Diesel, Algae, Karanja and Jatropha Oil Methyl Ester Biodiesel with CeO2 Fuel Additive in a Military Heavy Duty 582 kW CIDI Diesel Engine

2021-09-21
2021-01-1209
Global warming due to exhaust emissions, rapid depletion of crude oil, and strict carbon control legislation has forced researchers to search biofuels as substitute for petroleum diesel fuels. Biodiesel is a renewable and oxygenated fuel. It is free from sulfur, non-toxic and a biodegradable. The different non-edible vegetable oils such as Algae, Karanja and Jatropha could be used to produce biodiesel. Biodiesel is a green fuel with an exception that it emits 15-20% more NOx as compared to diesel fuel. The emissions of nanoparticles are more hazardous to human health. The nanoparticles emission of biodiesel must be measured according to the new strict regulations. The engine performance and the lower emission characteristics, except for NOx emission, for Algae, Karanja and Jatropha oil biodiesels are similar to those of diesel fuel.
Technical Paper

Performance Analysis and In-Cylinder Visualization of Conventional Diesel and Isobaric Combustion in an Optical Diesel Engine

2021-09-05
2021-24-0040
Compared to conventional diesel combustion (CDC), isobaric combustion can achieve a similar or higher indicated efficiency, lower heat transfer losses, reduced nitrogen oxides (NOx) emissions; however, with a penalty of soot emissions. While the engine performance and exhaust emissions of isobaric combustion are well known, the overall flame development, in particular, the flow-field details within the flames are unclear. In this study, the performance analysis of CDC and two isobaric combustion cases was conducted, followed by high-speed imaging of Mie-scattering and soot luminosity in an optically accessible, single-cylinder heavy-duty diesel engine. From the soot luminosity imaging, qualitative flow-fields were obtained using flame image velocimetry (FIV). The peak motoring pressure (PMP) and peak cylinder pressure (PCP) of CDC are kept fixed at 50 and 70 bar, respectively.
Technical Paper

Conditional Moment Closure Approaches for Simulating Soot and NOx in a Heavy-Duty Diesel Engine

2021-09-05
2021-24-0041
A heavy-duty diesel engine (ETH-LAV single cylinder MTU396 heavy duty research engine) was simulated by RANS and advanced reacting flow models to gain insight into its soot and NOx emissions. Due to symmetry, a section of the engine containing a single injector-hole was simulated. Dodecane was used as a surrogate to emulate the evaporation properties of diesel and a 22-step reaction mechanism for n-heptane was used to describe combustion. The Conditional Moment Closure (CMC) method was used as the combustion model in two ways. In a more conventional modelling approach, CMC was fully interfaced with the CFD and a two-equation model was employed for determining soot while the extended Zeldovich mechanism was used for NOx. In a second approach called the Imperfectly Stirred Reactor (ISR) method, the CMC equation was integrated over space and the previous RANS-CMC solution was further analysed in a post-processing step with the focus on soot.
Technical Paper

Exhaust Note Tuning and Correlation Using 1-D Analysis of a Performance Truck

2021-08-31
2021-01-1045
Exhaust noise and note are key factors when deciding which high-performance vehicle to buy. Cadence and tone of the exhaust can determine whether a customer is willing to make a purchase. To make sure the exhaust note is desirable, manufacturers must make several prototypes with each subjected to extensive testing, tuning, and customer surveying. This process can be expensive and time consuming. However, even after such processes, the final design may not be well received by consumers. Utilizing computer aided engineering (CAE), specifically computational fluid dynamics (CFD) can provide a financially viable and technically sound solution to this issue. Recent developments in CAE software have allowed for capturing the effects of aeroacoustics in exhaust systems and reproducing the acoustic signatures as well as a physical exhaust note.
Technical Paper

EGR Strategies Pertaining to High Pressure and Low Pressure EGR in Heavy Duty CNG Engine to Optimize Exhaust Temperature and NOx Emissions

2021-09-22
2021-26-0114
CNG has proven to be a concrete alternative to gasoline and diesel fuel for sustained mobility. Due to stringent emission norms and sanctions being imposed on diesel fuel vehicles, OEMs have shifted their attention towards natural gas as an efficient and green fuel. Newly implemented BS VI emission norms in India have stressed on the reduction of Nitrogen Oxides (NOx) from the exhaust by almost 85% as compared to BS IV emission norms. Also, Indian Automotive market is fuel economy cautious. This challenges to focus on improving fuel economy but without increase in NOx emissions. Exhaust Gas Recirculation (EGR) has the potential to reduce the NOx emissions by decreasing the in-cylinder temperature. The objective of the paper is to model a CNG TCIC engine using 1D simulation in order to optimize the NOx emissions and maintain exhaust temperatures under failsafe limits.
Technical Paper

Investigations of Emission Reduction Potential of Diesel-Methanol Blends in a Heavy-Duty Genset Engine

2021-09-22
2021-26-0104
One of the most promising fuel alternatives for Diesel is Methanol. The fuel is regarded advantageous owing to the easy availability of raw materials for its production, its low cost and high Oxygen content that has potential to reduce emissions of smoke, CO and PM. Methanol as a fuel blend with Diesel is non-viable as they are not readily miscible with each other. This paper expounds the engine performance and emission evaluation of blending Methanol with Diesel by using two methods that aid in overcoming phase separation. The experiments were performed in two stages. In the first stage, investigation of phase stabilization of Methanol in Diesel with suitable additive concentration was performed. This was performed to determine the optimum additive and its concentration for a Methanol share of up to 25% in Diesel-Methanol blends for a stabilization period of 30 days.
Technical Paper

A Comprehensive Study on DOC Selection for Euro 6 Compliant Heavy Commercial Vehicles

2021-09-22
2021-26-0216
Euro 6 emission norms are getting implemented in India from April 2020 and it is being viewed as one of the greatest challenges ever faced by the Indian automotive industry. In order to achieve such stringent emission norms along with top performance for vehicle, a good strategy should be incorporated to control system out NOx emissions and soot regeneration. Extruded Vanadium catalyst is deployed for this passive regeneration system with DOC (Diesel Oxidation Catalyst), DPF (Diesel Particulate Filter) and SCR (Selective Catalyst Reduction), where the amount of catalyst loading in DOC plays an apex role in deciding conversion efficiency of SCR and passive regeneration capabilities. This study mainly focuses on the impact of catalyst loading of DOC over SCR efficiency. NO2 to NOx ratio should be close to 0.5 for optimum conversion efficiency of SCR. Catalyst loading in DOC decides the amount of NO2 coming upstream to SCR.
Technical Paper

Tail Pipe Emission Study of an Aged Exhaust after Treatment System for 3.8 Litre Diesel Engine

2021-09-22
2021-26-0215
With implementation of stringent BSVI emission norms and regulations like OBD-II on vehicle, it is essential to define the life of exhaust after treatment along with the vehicle. Diesel after treatment generally consists of DOC, DPF and SCR. Lubricating oil contains phosphorus and zinc which adversely affect the DOC. Unburned hydrocarbons (UNHBC) and SOF in tail pipe get accumulated in the DPF. This requires regeneration process where in, high temperatures in exhaust after treatment (EATS) burn the adsorbed Sulphur or phosphorus, thereby improving the conversion efficiencies. Repeated regenerations lead to ash accumulation in DPF and this reduces its capability for soot accumulation. Sulphur in the exhaust impacts SCR through NOx conversion. The present study analyzes the effect of (1) Chemical aging (2) Thermal aging on 3.77 liter diesel engine after treatment. A test cycle was prepared to run the durability for EATS.
Technical Paper

A Novel Thermal Management Simulation Model Analysis for The Fuel Cell Electric Truck Systems

2021-09-22
2021-26-0226
The increase in the global warming potential and increase in the pollution rate; people tend to adopt an alternative for the internal combustion engine vehicles. And the alternative leans toward electric vehicle technology. The pure electric vehicle technology also has the limitations of lesser energy storing capacity and higher charging time; needs further improvement. The advancements are Fuel Cell Electric Vehicles (FCEV) helps the vehicles to have a higher range and lesser filling time. The efficient thermal management system in FCEV leads higher energy utilization and increased vehicle range. This paper deals with the significance of thermal management energy consumption on the range and effective working of the FCEV System.
X