Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Comparing Dolly Rollover Testing to Steer-Induced Rollover Events for an Enhanced Understanding of Off-Road Rollover Dynamics

2011-11-01
The field of motor vehicle rollover research and testing has been one of multiple and varied approaches, dating back to at least the 1930's. The approach has been as simple as tipping a vehicle over at the top of a steep hill ( Wilson et al., 1972 ), to as complex as releasing a vehicle from an elevated roll spit mounted to the rear of a moving tractor and trailer ( Cooper et al., 2001 and Carter et al., 2002 ). Presenter Peter Luepke, P Luepke Consulting
Video

Career Wise for Engineering Professionals: Transforming Your Talents into the New World of Work

2013-08-19
There are many macro drivers that are creating opportunities for transportation electrification. They include the environment, dependence on foreign oil, national security, battery technology and government incentives to name a few. In light of this growing momentum consumers will have choices to where they can charge ? at home, workplace or publicly. Electrical vehicle supply equipment will drive value throughout the supply chain ? installer, building owner, automaker, suppliers, utilities and consumers. Market acceptance will occur when consumer?s needs and wants are met. To meet these needs access to products through multiple channels will be required. Presenter Manoj Karwa, Leviton Manufacturing Co. Inc.
Journal Article

Design, Analysis, and Optimization of a Multi-Speed Powertrain for Class-7 Electric Trucks

2018-04-17
Abstract The development, analysis, and optimization of battery electric class-7 heavy-duty trucks equipped with multi-speed transmissions are discussed in this paper. The designs of five new traction motors-fractional-slot, concentrated winding machines-are proposed for use in heavy-duty electric trucks. The procedure for gear-ratio range selection is outlined and ranges of gear ratios for three-to six-speed transmission powertrains are calculated for each of the proposed electric traction motors. The simulation and gear-ratio optimization tasks for class-7 battery electric trucks are formulated. The energy consumption of the e-truck with the twenty possible powertrain combinations is minimized over the four driving cycles and the most efficient powertrain layouts that meet the performance criteria are recommended.
Journal Article

Separable and Standard Monte Carlo Simulation of Linear Dynamic Systems Using Combined Approximations

2019-01-25
Abstract Reliability analysis of a large-scale system under random dynamic loads can be a very time-consuming task since it requires repeated studies of the system. In many engineering problems, for example, wave loads on an offshore platform, the excitation loads are defined using a power spectral density (PSD) function. For a given PSD function, one needs to generate many time histories to make sure the excitation load is modeled accurately. Global and local approximation methods are available to predict the system response efficiently. Each way has their advantages and shortcomings. The combined approximations (CA) method is an efficient method, which combines the advantages of local and global approximations. This work demonstrates two methodologies that utilize CA to reduce the cost of crude or separable Monte Carlo simulation (MCS) of linear dynamic systems when the excitation loads are defined using PSD functions.
Journal Article

Development of a Learning Capability in Virtual Operator Models

2019-03-14
Abstract This research developed methods for a virtual operator model (VOM) to learn the optimal control inputs for operation of a virtual excavator. Virtual design, used to model, simulate, and test new features, has often been limited by the fidelity of the virtual model of human operators. Human operator learns, over time, the capability, limits, and control characteristics of new vehicles to develop the best strategy to maximize the efficiency of operation. However, VOMs are developed with fixed strategies and for specific vehicle models (VMs) and require time-consuming re-tuning of the VOM for each new vehicle design. Thus, there typically is no capability to optimize strategies, taking account of variation in vehicle capabilities and limitations. A VOM learning capability was developed to optimize control inputs for the swing-to-pile task of a trenching operation. Different control strategies consisted of varied combinations of speed control, position control, and coast.
Journal Article

Fatigue Evaluation of Multi-Degree of Freedom, Frequency Domain, Stochastic, Truck Road Load Models

2019-02-11
Abstract A number of semi-deterministic and stochastic formulations of multi-degree of freedom, frequency domain load models for heavy truck chassis are proposed and evaluated. The semi-deterministic models aim at reproducing the damage of a specific vehicle, while the stochastic ones aim to describe a collection of vehicle loads. The stochastic models are divided into two groups: Monte Carlo based and models based on single spectrum matrices. In both cases, the objective is to provide a load model that may be used to produce a design with a certain probability of survival. The goodness of the models is evaluated through a comparison of their damage outcomes with the corresponding damages of a set of time domain loads. This original time domain load set consists of chassis accelerations collected from seven physical trucks.
Journal Article

Enhanced Lateral and Roll Stability Study for a Two-Axle Bus via Hydraulically Interconnected Suspension Tuning

2018-11-19
Abstract The suspension system has been shown to have significant effects on vehicle performance, including handling, ride, component durability, and even energy efficiency during the design process. In this study, a new roll-plane hydraulically interconnected suspension (HIS) system is proposed to enhance both roll and lateral dynamics of a two-axle bus. The roll-plane stability analysis for the HIS system has been intensively explored in a number of studies, while only few efforts have been made for suspension tuning, especially considering lateral plane stability. This article aims to explore the integrated lateral and roll dynamics by suspension tuning of a two-axle bus equipped with HIS system. A ten-degree-of-freedom (DOF) lumped-mass vehicle model is integrated with either transient mechanical-hydraulic model for HIS or the traditional suspension components, namely, shock absorber and anti-roll bar (ARB).
Journal Article

Modularity Adoption in Product Development: A Case Study in the Brazilian Agricultural Machinery Industry

2014-01-15
2013-01-9093
Facing a competitive and globalized market and with increasingly demanding customers, companies must constantly seek the development of practices in the development of new products. One of the current practices is the adoption of modularity. In that sense, the objective of this paper is to conduct an analysis of this practice in a Brazilian company, which manufactures agricultural machinery. The applicability of modular design in current products is focused. Therefore, a case study approach has been chosen. First, a review of the scientific literature was conducted, followed by field research, for collecting data based on interviews with product engineers and technical documentation. The case study shows the applicability of the modular design concept in a combine header, by increasing the number of repeated components. The modular header approach facilitates the implementation of engineering changes and allows greater standardization of components.
Journal Article

Components Durability, Reliability and Uncertainty Assessments Based on Fatigue Failure Data

2014-09-30
2014-01-2308
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings.
Journal Article

Virtual Vehicle Design based on Key Performance Indicators Assessing the Vehicle Portfolio

2014-09-30
2014-01-2415
This paper focuses on the manufacturer's conflict in the conceptual design of commercial vehicles between highly customized special vehicles and the greatest possible degree of standardization. Modularity and standardization are crucial success factors for realizing high variance at the best cost efficiency in development and production as well for achieving the highest quality standards at reduced efforts for technical validation. The presented virtual design approach for commercial vehicle concepts allows for purposeful design and integration of new concepts and technologies on the component level in an existing product portfolio - not neglecting manufacture's portfolio requirements concerning standardization and modularity. The integrated tool chain helps to bring trade-offs to a head that exist in balancing between dedicated vehicles with best customer-relevant characteristics and standardized vehicles with the highest degree of commonality.
Journal Article

A Parametric Assessment of Skirt Performance on a Single Bogie Commercial Vehicle

2013-09-24
2013-01-2415
A Department of Energy funded research project currently in the final stages of completion has resulted in a web-based tool that gives non-expert users the ability to add aerodynamic devices to a CFD model of a single bogie trailer and generalized tractor model. This model was used to assess the aerodynamic performance of skirt geometries. The skirts were defined using 5 independent geometric parameters and 2 installation parameters. These parameters allow enough freedom in the geometry definition to capture the shape and installation position and angle of a wide number of commercially available skirts on the market today. Using a Design of Experiments approach, the aerodynamic drag response of the truck and trailer to any parametric change in the skirt geometry has been determined across a range of yaw angles.
Journal Article

Performance Analysis of Existing 1609.2 Encodings v ASN.1

2015-04-14
2015-01-0288
IEEE Standard 1609.2-2013, Security Services for Applications and Management Messages for Wireless Access in Vehicular Environments (WAVE), specifies its data structures and encoding using a proprietary language based on that used in the Internet Engineering Task Force (IETF)'s Transport Layer Security (TLS) specification. This approach is believed to allow fast encoding and decoding, but is non-standard, is not proved to be complete, lacks automatic tools for generation of codecs, and is difficult to extend. For these reasons, the 1609 Working Group approved the use of Abstract Syntax Notation 1 (ASN.1) for future versions of 1609.2, so long as ASN.1 did not significantly degrade performance. This paper is the first publication of the results of a performance analysis carried out to determine whether ASN.1-based encoding was in fact acceptable.
Journal Article

Evaluation of the Influence of Stakes on Drag and Fuel Consumption for a Tractor-Logging Trailer Combination

2014-09-30
2014-01-2447
The main objective of this study is to reduce the aerodynamic drag of tractor-trailer combinations used in the forest industry. In most cases, logging trucks on their return trips are usually travelling in unloaded conditions with upright stakes, which add drag. CFD and wind tunnel testing suggested a drag reduction of up to 35% with no upright stakes, which corresponds to 17% in fuel savings in unloaded conditions. One of the proposed fuel reduction concepts was therefore to have foldable stakes so that the stakes could fold down into a horizontal position while travelling in unloaded conditions. Fuel savings of 15% for a vehicle with stakes in the horizontal position were confirmed with track testing when compared to the fuel consumption of a vehicle with stakes in the vertical position. The coastdown test indicated 28% reduction in drag. The difference in drag reduction between the coastdown test and initial simulation was due to stake size and profile.
Technical Paper

Parameter Matching of Planetary Gearset Characteristic Parameter of Power-Spilt Hybrid Vehicle

2021-09-16
2021-01-5088
To quickly and efficiently match the planetary gearset characteristic parameter of power-spilt hybrid vehicles so that their oil-saving potential can be maximized, this study proposes a parameter matching method that comprehensively considers energy management strategy and driving cycle based on an analysis of vehicle instantaneous efficiency. The method is used to match the planetary characteristic parameter of a power-split hybrid light truck. The relevant conclusions are compared with the influence of various planetary characteristic parameters on fuel consumption obtained through simulation under typical operating conditions. The simulation results show that the influence laws of the various planetary characteristic parameters on vehicle average efficiency are similar to those on fuel consumption. The proposed parameter-matching method based on vehicle efficiency analysis can effectively match the planetary characteristic parameter for power-split hybrid powertrains.
Technical Paper

A Comparative Study between Abrasion Techniques to Improve the Adhesion of Rubber and Metal Bond for Commercial Vehicle Applications

2021-09-22
2021-26-0253
Engine mounts are an integral part of the vehicle that helps in reducing the vibrations generated from the engine. Engine mounts require a simple yet complicated amalgamation of two very different materials, steel and rubber. Proper adhesion between the two is required to prevent any part failure. Therefore, it becomes important that a comprehensive study is done to understand the mating phenomenon of both. A good linking between rubber and metal substrate is governed by surface pretreatment. Various methodologies such as mechanical and chemical are adopted for the same. This paper aims to present a comparative study as to which surface pretreatment has an edge over other techniques in terms of separation force required to break the bonding between the two parts. The study also presents a cost comparison between the techniques so that the best possible technique can be put to use in the commercial vehicle industry.
Technical Paper

Parameter Optimization of Off-Road Vehicle Frame Based on Sensitivity Analysis, Radial Basis Function Neural Network, and Elitist Non-dominated Sorting Genetic Algorithm

2021-08-10
2021-01-5082
The lightweight design of a vehicle can save manufacturing costs and reduce greenhouse gas emissions. For the off-road vehicle and truck, the chassis frame is the most important load-bearing assembly of the separate frame construction vehicle. The frame is one of the most assemblies with great potential to be lightweight optimized. However, most of the vehicle components are mounted on the frame, such as the engine, transmission, suspension, steering system, radiator, and vehicle body. Therefore, boundaries and constraints should be taken into consideration during the optimal process. The finite element (FE) model is widely used to simulate and assess the frame performance. The performance of the frame is determined by the design parameters. As one of the largest components of the vehicle, it has a lot of parameters. To improve the optimum efficiency, sensitivity analysis is used to narrow the range of the variables.
Technical Paper

Bump Steer and Brake Steer Optimization in Steering Linkages Through TAGUCHI Method DOE Analysis

2021-09-22
2021-26-0079
Due to recent infrastructural development and emerging competitive automotive markets, there is seen a huge shift in customer’s demand and vehicle drivability pattern in commercial vehicle industry. Now apart from ensuring better vehicle durability and best in class tyre life and fuel mileage, a vehicle manufacturer also has to focus on other key attributes like driver’s safety and ride comfort. Thus, for ensuring enhanced drivability, key parameters for ensuring better vehicle handling includes optimization of bump steer and brake steer. Both bump steer and brake steer are vehicle’s undesirable phenomenon where a driver is forced to constantly make steering wheel correction in order to safely maneuver the vehicle in the desired path.
Technical Paper

A Study on Significance of Forward Speed of Tractor and Peripheral Speed of Rotavator for Optimal Field Performance

2021-09-22
2021-26-0099
The trace of rotavator blade is trochoidal path which depends both on tractor forward speed and rotational speed of rotavator. Since this path plays an important role in pulverization, hence pulverization also depends on both factors. In present days system, Rotavator an active tillage implements drawn by tractor is operated by drivers experience and driver set up the speed by throttling the tractor to reach the rated 540 PTO rpm mark in instrumentation cluster. Thus, there is no indication system available to farmer/ Tractor driver to operate the tractor connected rotavator at optimal forward tractor speed and rotational speed of rotavator. Thus, leading to decrease in field quality and performance.
Technical Paper

Investigation of Driving Style Impact on the Ecological Indicators of a Diesel Multiple Unit (SAE Paper 2020-01-2213)

2020-09-15
2020-01-2213
The topics covered in the publication are consistent with the global trends that are aimed at reducing the negative environmental impact of human activities, which are implemented simultaneously in two areas: approval and operation. The article presents issues related to the impact of diesel multiple unit operation on the exhaust emission of harmful and toxic components and fuel consumption. Research trials concerned different driving styles and acceleration patterns of the tested vehicle, which can be considered a part of the eco-driving trend. These tests were carried out on a closed track designated for testing rail vehicles with the use of mobile measuring apparatus, intended for testing vehicles in real conditions of their operation.
X