Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Fuel Consumption Track Tests for Tractor-Trailer Fuel Saving Technologies

2009-10-06
2009-01-2891
The objective of the project was to conduct controlled test-track studies of solutions for achieving higher fuel efficiency and lower greenhouse gas emissions in the trucking industry. Using vehicles from five Canadian fleets, technologies from 12 suppliers were chosen for testing, including aerodynamic devices and low rolling resistance tires. The participating fleets also decided to conduct tests for evaluating the impact on fuel consumption of vehicle speed, close-following between vehicles, and lifting trailer axles on unloaded B-trains. Other tests targeted comparisons between trans-container road-trains and van semi-trailers road-trains, between curtain-sided semi-trailers, trans-containers and van semi-trailers, and between tractors pulling logging semi-trailers loaded with tree-length wood and short wood. The impact of a heavy-duty bumper on fuel consumption and the influence of B5 biodiesel blend on fuel consumption were also assessed.
Journal Article

Comparison of Fuel Efficiency and Traction Performances of 6 × 4 and 6 × 2 Class 8 Tractors

2014-09-30
2014-01-2358
The objective of this project was to compare the fuel consumption and traction performances of 6 × 2 and 6 × 4 Class 8 tractors. Two approaches have been considered: evaluation of 6 × 2 tractors, modified from 6 × 4 tractors, and evaluation of OEM 6 × 2 tractors. Compared to the 6 × 4 tractors, which are equipped with a rear tandem with both drive axles, the 6 × 2 tractors have a rear tandem axle with one drive axle, and one non-drive axle, also called dead axle. The 6 × 2 tractor configurations are available from the majority of Class 8 tractor manufacturers. The SAE Fuel Consumption Test Procedures Type II (J1321) and Type III (J1526) were used for fuel consumption track test evaluations. Traction performances were assessed using pull sled tests to compare pulling distance, maximum speed, and acceleration when pulling the same set sled on similar surface.
Journal Article

Evaluation of the Influence of Stakes on Drag and Fuel Consumption for a Tractor-Logging Trailer Combination

2014-09-30
2014-01-2447
The main objective of this study is to reduce the aerodynamic drag of tractor-trailer combinations used in the forest industry. In most cases, logging trucks on their return trips are usually travelling in unloaded conditions with upright stakes, which add drag. CFD and wind tunnel testing suggested a drag reduction of up to 35% with no upright stakes, which corresponds to 17% in fuel savings in unloaded conditions. One of the proposed fuel reduction concepts was therefore to have foldable stakes so that the stakes could fold down into a horizontal position while travelling in unloaded conditions. Fuel savings of 15% for a vehicle with stakes in the horizontal position were confirmed with track testing when compared to the fuel consumption of a vehicle with stakes in the vertical position. The coastdown test indicated 28% reduction in drag. The difference in drag reduction between the coastdown test and initial simulation was due to stake size and profile.
Journal Article

The Impact of Lift Axles on Fuel Economy and GHG Emissions Reduction

2015-09-29
2015-01-2874
Using lift axles enables fleet to increase the load capacity of a vehicle, eliminating the need for multiple trips, thus reducing operational costs. In a project to assess the potential of reducing fuel consumption and greenhouse gas (GHG) emissions by lifting axles on unloaded semi-trailers, lift axle regulations in various jurisdictions and the studies that led to these regulations were analyzed. The SAE Fuel Consumption Test Procedures Type II (J1321) was used for fuel consumption track test evaluations. The tests were conducted on unloaded two-axle van semi-trailers, four-axle van semitrailers, and B-trains, and resulted in fuel savings of 1.3% to 4.8%, depending on vehicle configuration and the number of axles lifted during the test.
Technical Paper

Track-test Evaluation of Aerodynamic Drag Reducing Measures for Class 8 Tractor-Trailers

2008-10-07
2008-01-2600
Air resistance, after gross vehicle weight, is the largest factor responsible for vehicle energy loss and has an important influence on fuel consumption. The magnitude of aerodynamic drag is affected by the vehicle's shape, frontal area, and travel speed. This study aimed to evaluate several aerodynamic drag reduction measures applicable to class 8 tractor-trailer combinations. The tested aerodynamic devices included trailer aft body rear deflectors (boat tails), trailer skirts, gap deflectors, fuel tank fairings and truck rear-axle fenders. It also assessed the aerodynamic influence of opened doors on an empty wood chip van trailer on the fuel consumption of the tractor-trailer combination. The tests were conducted according to SAE J1321 Joint TMC/SAE Fuel Consumption Test Procedure - Type II.
Technical Paper

Evaluation of Tractor-Trailer Rolling Resistance Reducing Measures

2010-10-05
2010-01-1917
This study aimed to evaluate several rolling resistance reduction measures applicable to class 8 tractor-trailer combinations. Two methods have been employed: fuel consumption tests according to the SAE J1321 Joint TMC/SAE Fuel Consumption Test Procedure - Type II, and long-term operational observations using control and test vehicles monitored throughout baseline and test periods. One way to reduce the rolling resistance is to use wide-base tires: two different Type II fuel consumption tests revealed a more than 9 % improvement in fuel economy for a tractor-trailer combination equipped with wide-base tires. Long-term operational observation assessed the use of single wide-base tires on two 8-axle B-train tractor-trailer combinations. The results showed an average 5.11% fuel improvement and an average 4.37% energy intensity improvement. Other tests compared single-wide base tires with different tread patterns and tire compounds.
Technical Paper

Development of a Fuel Consumption Test Procedure for Representative Urban Duty Cycles

2011-09-13
2011-01-2291
This project's objective was the development of an on-road vehicle fuel consumption test procedure for representative stop-and-go urban duty cycles. The scope of the project included a review of existing stop-and-go urban duty cycles, the development of a track testing methodology for measuring the fuel consumption on stop-and-go urban duty cycles, and testing with a view to the validation of the methodology. Literature review analyzed several transport activities to determine specific stop-and-go urban duty cycles, such as pick-up and delivery operations, refuse collection, bus transport, and utility and service operation. It was found that driving cycles should be easy enough to recreate and replicate on the test track and should be representative of application driving patterns. The cycles should be adapted for fuel economy testing, and geometric cycles are easier to follow than the cycles based on actual drive traces.
Technical Paper

Evaluation of Class 7 Diesel-Electric Hybrid Trucks

2012-09-24
2012-01-1987
The objectives of this project were to evaluate the reduction in fuel consumption and greenhouse gas (GHG) emissions made possible by hybrid technology, and to identify good driving habits with this type of vehicle. Two diesel-electric hybrid pick-up and delivery trucks and one diesel-electric hybrid utility vehicle equipped with an electric driven PTO (power take-off) system were included in the project. The first phase was the evaluation in actual operating conditions. Onboard computers were installed in the vehicles to record parameters that make it possible to determine driving habits. Based on operational data, specific duty cycles were built and track tests were conducted to measure the fuel consumption on these duty cycles. It was therefore possible to compare the hybrid trucks with other diesel trucks featuring similar characteristics. The delivery hybrid trucks showed up to 34% fuel savings during the track tests.
Technical Paper

Evaluation of the Effect of Ambient Conditions on the Fuel Consumption of Commercial Vehicles

2022-03-29
2022-01-0528
Commercial fleets are interested in results from experiments conducted in real operational conditions to help them quantify and understand the impact of environmental factors on fuel economy and operating costs. The goal of this study was to measure through controlled track testing and operational testing the effects of environmental conditions, particularly ambient temperature, and air density, on fuel consumption. Extensive track testing based on the SAE J1321 Fuel Consumption Test Procedure - Type II protocol with various vehicles under different test conditions showed a decrease in fuel efficiency of up to 12% for an air density variation of 7% and an ambient temperature variation of 30 °F (17 °C). Data from various and extensive operational tests were also analyzed, specifically from tests conducted using several groups of medium and heavy-duty vehicles involved in regional, local, urban transport and pick-up and delivery.
X