Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Charging Forward on Petroleum Alternatives

2011-12-14
The pace of replacement of petroleum-based fuels as the primary fuel supply for transportation may still be a point of debate. However, the need to find a viable replacement fuel or group of fuels is no longer a major point of debate. The panel will outline what has changed on the journey during the past few years and what the future holds. Viewpoints from government, the military, fuel suppliers and academia will be presented.
Collection

Commercial Vehicles Chassis, Suspension, and Tire Modeling and Simulation Studies, 2013

2013-09-25
This technical paper collection is intended to include papers that will discuss and promote the recent advances in the modeling and analysis of commercial vehicle chassis, suspension, and tire modeling and simulation. Topics include, but are not limited to: commercial vehicle dynamics; chassis control devices such as ABS, traction control, yaw/roll stability control, and potentially the interplay with suspension control; chassis modeling and simulation to study and resolve issues pertaining to ride comfort, crash/deformation, and safety structure; suspension modeling and simulation studies covering passive and active control methodologies; and tires which would cover new and/or improved modeling techniques.
Collection

Steering and Suspension Technology Symposium, 2017

2017-03-28
The papers in this collection are to provide a forum for presentations on steering and suspension related topics as it applies to ground vehicles. Papers address new approaches as well as advances in application of steering, suspension related technologies.
Journal Article

Hydro-Pneumatic Energy Harvesting Suspension System Using a PSO Based PID Controller

2018-08-01
Abstract In this article, a unique design for Hydro-Pneumatic Energy Harvesting Suspension HPEHS system is introduced. The design includes a hydraulic rectifier to maintain one-way flow direction in order to obtain maximum power generation from the vertical oscillation of the suspension system and achieve handling and comfort car drive. A mathematical model is presented to study the system dynamics and non-linear effects for HPEHS system. A simulation model is created by using Advanced Modeling Environment Simulations software (AMEsim) to analyze system performance. Furthermore, a co-simulation platform model is developed using Matlab-Simulink and AMEsim to optimize the PID controller parameters of the external variable load resistor applied on the generator by using Particle Swarm Optimization (PSO).
Journal Article

Separable and Standard Monte Carlo Simulation of Linear Dynamic Systems Using Combined Approximations

2019-01-25
Abstract Reliability analysis of a large-scale system under random dynamic loads can be a very time-consuming task since it requires repeated studies of the system. In many engineering problems, for example, wave loads on an offshore platform, the excitation loads are defined using a power spectral density (PSD) function. For a given PSD function, one needs to generate many time histories to make sure the excitation load is modeled accurately. Global and local approximation methods are available to predict the system response efficiently. Each way has their advantages and shortcomings. The combined approximations (CA) method is an efficient method, which combines the advantages of local and global approximations. This work demonstrates two methodologies that utilize CA to reduce the cost of crude or separable Monte Carlo simulation (MCS) of linear dynamic systems when the excitation loads are defined using PSD functions.
Journal Article

Onboard Natural Gas Reforming for Heavy Duty Vehicles

2019-01-07
Abstract Powertrain simulations and catalyst studies showed the efficiency credits and feasibility of onboard reforming as a way to recover waste heat from heavy duty vehicles (HDVs) fueled by natural gas (NG). Onboard reforming involves 1) injecting NG into the exhaust gas recycle (EGR) loop of the HDV, 2) reforming NG on a catalyst in the EGR loop to hydrogen and carbon monoxide, and 3) combusting the reformed fuel in the engine. The reformed fuel has increased heating value (4-10% higher LHV) and flame speed over NG, allowing stable flames in spark ignition (SI) engines at EGR levels up to 25-30%. A sulfur-tolerant reforming catalyst was shown to reform a significant amount of NG (15-30% conversion) using amounts of precious metal near the current practice for HDV emissions control (10 g rhodium). Engine simulations showed that the high EGR levels enabled by onboard reforming are used most effectively to control engine load instead of waste-gating or throttling.
Journal Article

Assessing Road Load Coefficients of a Semi-Trailer Combination Using a Mechanical Simulation Software with Calibration Corrections

2019-01-07
Abstract The study of road loads on trucks plays a major role in assessing the effect of heavy-vehicle design on fuel conservation measures. Coastdown testing with full-scale vehicles in the field offers a good avenue to extract drag components, provided that random instrumentation faults and biased environmental conditions do not introduce errors into the results. However, full-scale coastdown testing is expensive, and environmental biases which are ever-present are difficult to control in the results reduction. Procedures introduced to overcome the shortcomings of full-scale field testing, such as wind tunnels and computational fluid dynamics (CFD), though very reliable, mainly focus on estimating the effects of aerodynamic drag forces to the neglect of other road loads which should be considered.
Journal Article

Enhanced Lateral and Roll Stability Study for a Two-Axle Bus via Hydraulically Interconnected Suspension Tuning

2018-11-19
Abstract The suspension system has been shown to have significant effects on vehicle performance, including handling, ride, component durability, and even energy efficiency during the design process. In this study, a new roll-plane hydraulically interconnected suspension (HIS) system is proposed to enhance both roll and lateral dynamics of a two-axle bus. The roll-plane stability analysis for the HIS system has been intensively explored in a number of studies, while only few efforts have been made for suspension tuning, especially considering lateral plane stability. This article aims to explore the integrated lateral and roll dynamics by suspension tuning of a two-axle bus equipped with HIS system. A ten-degree-of-freedom (DOF) lumped-mass vehicle model is integrated with either transient mechanical-hydraulic model for HIS or the traditional suspension components, namely, shock absorber and anti-roll bar (ARB).
Collection

Commercial Vehicle Engine Exhaust Aftertreatment & Integration, 2011

2011-09-13
The 12 papers in this technical paper collection discuss technologies that address the treatment of engine exhaust emissions to meet commercial vehicle requirements. The scope covers developments in catalysis, materials, controls, and integration with the complete engine/vehicle system.
Collection

Commercial Vehicle Modeling of Chassis, Suspension, and Tires, 2011

2011-09-13
This technical paper collection features 10 papers dedicated to chassis, suspension, and tire modeling and simulation developed for and applied to vehicle systems. Topic covered include vehicle modeling, vehicle dynamic simulation analysis (handling, ride comfort, mobility, durability, etc.), and vehicle design.
Journal Article

Fuel Consumption Track Tests for Tractor-Trailer Fuel Saving Technologies

2009-10-06
2009-01-2891
The objective of the project was to conduct controlled test-track studies of solutions for achieving higher fuel efficiency and lower greenhouse gas emissions in the trucking industry. Using vehicles from five Canadian fleets, technologies from 12 suppliers were chosen for testing, including aerodynamic devices and low rolling resistance tires. The participating fleets also decided to conduct tests for evaluating the impact on fuel consumption of vehicle speed, close-following between vehicles, and lifting trailer axles on unloaded B-trains. Other tests targeted comparisons between trans-container road-trains and van semi-trailers road-trains, between curtain-sided semi-trailers, trans-containers and van semi-trailers, and between tractors pulling logging semi-trailers loaded with tree-length wood and short wood. The impact of a heavy-duty bumper on fuel consumption and the influence of B5 biodiesel blend on fuel consumption were also assessed.
Journal Article

Components Durability, Reliability and Uncertainty Assessments Based on Fatigue Failure Data

2014-09-30
2014-01-2308
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings.
Journal Article

Development of Representative Regional Delivery Drive Cycles for Heavy-Duty Truck Tractors

2014-05-05
2014-01-9024
Several drive cycles have been developed to describe heavy-duty class 8 truck tractor operations. However, regional delivery operations, consisting of a mix of urban and over-the-road driving using highways to access several delivery/pick-up sites in dense urban areas, have not been well described. With funding from the U.S. Army National Automotive Center, the High-efficiency Truck Users Forum (HTUF) developed two drive cycles in an effort to better describe the full range of Class 8 truck tractor operations, which in total consumed about 30 billion gallons of diesel in the United States in 2010. This paper describes the rational for and the process to develop two regional delivery drive cycles: HTUF Regional Delivery #1 and HTUF Regional Delivery #2. These cycles were developed from more than eight months of cumulative data collected on six diesel Class 8 truck tractors operating across North America and representing several types of truck vocations.
Journal Article

Model-Based and Signal-Based Gearbox Sensor Fault Detection, Identification and Accommodation

2014-05-09
2014-01-9025
The emergence of tougher environmental legislations and ever increasing demand for increased ride comfort, fuel efficiency, and low emissions have triggered exploration and advances towards more efficient vehicle gearbox technologies. The growing complexity and spatial distribution of such a mechatronic gearbox demands precise timing and coordination of the embedded electronics, integrated sensors and actuators as well as excellent overall reliability. The increased gearbox distributed systems have seen an increased dependence on sensors for feedback control, predominantly relying on hardware redundancy for faults diagnosis. However, the conventional hardware redundancy has disadvantages due to increased costs, weight, volume, power requirements and failure rates. This paper presents a virtual position sensor-based Fault Detection, Isolation and Accommodation (FDIA), which generates an analytical redundancy for comparison against the actual sensor output.
Journal Article

Development Trends for Commercial and Industrial Engines

2014-09-30
2014-01-2325
Exhaust emission reduction and improvements in energy consumption will continuously determine future developments of on-road and off-road engines. Fuel flexibility by substituting Diesel with Natural Gas is becoming increasingly important. To meet these future requirements engines will get more complex. Additional and more advanced accessory systems for waste heat recovery (WHR), gaseous fuel supply, exhaust after-treatment and controls will be added to the base engine. This additional complexity will increase package size, weight and cost of the complete powertrain. Another critical element in future engine development is the optimization of the base engine. Fundamental questions are how much the base engine can contribute to meet the future exhaust emission standards, including CO2 and how much of the incremental size, weight and cost of the additional accessories can be compensated by optimizing the base engine.
Journal Article

Fused Dynamics of Unmanned Ground Vehicle Systems

2014-09-30
2014-01-2322
Through inverse dynamics-based modeling and computer simulations for a 6×6 Unmanned Ground Vehicle (UGV) - a 6×6 truck - in stochastic terrain conditions, this paper analytically presents a coupled impact of different driveline system configurations and a suspension design on vehicle dynamics, including vehicle mobility, and energy efficiency. A new approach in this research work involves an estimation of each axle contribution to the level of potential mobility loss/increase and/or energy consumption increase/ reduction. As it is shown, the drive axles of the vehicle interfere with the vehicle's dynamics through the distribution of the wheels' normal reactions and wheel torques. The interference causes the independent system dynamics to become operationally coupled/fused and thus diminishes vehicle mobility and energy efficiency. The analysis is done by the use of new mobility indices and energy efficiency indices which are functionally coupled/fused.
Journal Article

Development of a Dynamic Vibration Absorber to Reduce Frame Beaming

2014-09-30
2014-01-2315
This paper describes the development and testing of a Dynamic Vibration Absorber to reduce frame beaming vibration in a highway tractor. Frame beaming occurs when the first vertical bending mode of the frame is excited by road or wheel-end inputs. It is primarily a problem for driver comfort. Up until now, few options were available to resolve this problem. The paper will review the phenomenon, design factors affecting a vehicle's sensitivity to frame beaming, and the principles of Dynamic Vibration Absorbers (AKA Tuned Mass Dampers). Finally, the paper will describe simulation and testing that led to the development of an effective vibration absorber as a field fix.
Journal Article

Relative Performance Analyses of Independent Front Axle Suspensions for a Heavy-Duty Mining Truck

2014-09-30
2014-01-2320
A range of axle suspensions, comprising hydro-pneumatic struts and diverse linkage configurations, have evolved in recent years for large size mining trucks to achieve improved ride and higher operating speeds. This paper presents a comprehensive analysis of different independent front suspension linkages that have been implemented in various off-road vehicles, including a composite linkage (CL), a candle (CA), a trailing arm (TA), and a double Wishbone (DW) suspension applied to a 190 tons mining truck. Four different suspension linkages are modeled in MapleSim platform to evaluate their kinematic properties. The relative kinematic properties of the suspensions are evaluated in terms of variations in the kingpin inclination, caster, camber, toe-in and horizontal wheel center displacements considering the motion of a hydro-pneumatic strut. The results revealed the CL and DW suspensions yield superior kinematic response characteristics compared to the CA and TA suspensions.
Journal Article

Comparison of Fuel Efficiency and Traction Performances of 6 × 4 and 6 × 2 Class 8 Tractors

2014-09-30
2014-01-2358
The objective of this project was to compare the fuel consumption and traction performances of 6 × 2 and 6 × 4 Class 8 tractors. Two approaches have been considered: evaluation of 6 × 2 tractors, modified from 6 × 4 tractors, and evaluation of OEM 6 × 2 tractors. Compared to the 6 × 4 tractors, which are equipped with a rear tandem with both drive axles, the 6 × 2 tractors have a rear tandem axle with one drive axle, and one non-drive axle, also called dead axle. The 6 × 2 tractor configurations are available from the majority of Class 8 tractor manufacturers. The SAE Fuel Consumption Test Procedures Type II (J1321) and Type III (J1526) were used for fuel consumption track test evaluations. Traction performances were assessed using pull sled tests to compare pulling distance, maximum speed, and acceleration when pulling the same set sled on similar surface.
Journal Article

Comparative Studies between CFD and Wind Tunnel Measurements of Cooling Performance and External Aerodynamics for a Heavy Truck

2014-09-30
2014-01-2443
Nowadays, much focus for vehicle manufacturers is directed towards improving the energy efficiency of their products. The aerodynamic drag constitutes one major part of the total driving resistance for a vehicle travelling at higher speeds. In fact, above approximately 80km/h the aerodynamic drag is the dominating resistance acting on a truck. Hence the importance of reducing this resistance is apparent. Cooling drag is one part of the total aerodynamic drag, which arises from air flowing through the heat exchangers, and the irregular under-hood area. When using Computational Fluid Dynamics (CFD) in the development process it is of great importance to ensure that the methods used are accurately capturing the physics of the flow. This paper deals with comparative studies between CFD and wind-tunnel tests. In this paper, two comparative studies are presented.
X