Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Characterization of Aerodynamic Design Spaces for Adjustable Tractor Surfaces

2016-09-27
2016-01-8147
Trailer positioning plays a significant role in the overall aerodynamics of a tractor-trailer combination and varies widely depending on configuration and intended use. In order to minimize aerodynamic drag over a range of trailer positions, adjustable aerodynamic devices may be utilized. For maximum benefit, it is necessary to determine the optimal position of the aerodynamic device for each trailer position. This may be achieved by characterizing a two-dimensional design space consisting of trailer height and tractor-trailer gap length, with aerodynamic drag as the response. CFD simulations carried out using a Lattice-Boltzmann based method were coupled with modeFRONTIER for the creation of multiple Kriging Response Surfaces. Simulations were carried out in multiple phases, allowing for the generation of intermediate response surfaces to estimate predictive error and track response surface convergence.
Technical Paper

Characterization of Aerodynamic Impact of Build Variation in Class 8 Tractor Trailers

2020-05-27
2020-01-5054
Build variation and tolerance stack up are unavoidable in the vehicle manufacturing process, not only for individual components and assemblies but also for the vehicle at large. Deviations across several components, each within tolerance limits, could ultimately have a significant effect on vehicle aerodynamic performance. The objective of this study is to quantify the impact of several such build variations on vehicle drag. A Lattice-Boltzmann-based simulation method was used in conjunction with design of experiments to construct a Kriging response surface interpolation model to efficiently characterize the impact of 17 different body and chassis build variations on the aerodynamic drag of a VNL 780 tractor trailer at a nonzero yaw angle. The top three parameters with greatest aerodynamic impact were then evaluated at the opposite symmetric yaw angle to understand the impact of build variation on vehicle asymmetry.
X