Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Analyzing Fuel Savings of an Aerodynamic Drag Reduction Device with the Aid of a Robust Linear Least Squares Method

2014-09-30
2014-01-2450
Improving the aerodynamic drag level of semi-trailers will contribute largely to reduce the fuel consumption and the emissions of harmful gases of heavy duty vehicles. The final step in product validation of aerodynamic drag reduction devices is often conducting fuel savings test during operational activities. During an operational test, data is gathered for a period when the vehicle is not equipped with an aerodynamic device and consequently for a period with the device equipped. A simple fuel consumption comparison between the periods does not give the desired accurate result as the operating conditions are different for the control and test period. In an attempt to take these varying conditions into account, the average fuel consumption per ride is modeled as a linear function of several independent variables: the wind conditions, the outside temperature, the humidity, the payload, the road inclination and the presence of the drag reduction device.
Journal Article

Effect of the Frontal Edge Radius in a Platoon of Bluff Bodies

2016-09-27
2016-01-8149
This paper investigates the effect of the frontal edge radius of the Generalized European Transport System (GETS) model on the aerodynamic behavior of three different vehicles in a platoon. Due to the increasing awareness around harmful gases and depleting oil sources, more sustainable transport systems are needed. The efficiency of long-haul, heavy-duty vehicles can be increased by driving in platoon formation in order to decrease aerodynamic drag and to increase fuel mileage. The drag behavior of drafting vehicles is already studied but differences in aerodynamic drag reductions occur on the trailing vehicle. Some studies indicate a drag increase while others predict a drag decrease. In this study, a numerical investigation was performed solving Reynolds Averaged Navier-Stokes equations with the aid of a commercial package. Four different inter-vehicle distances were tested for the vehicles with several different frontal edge radii.
X