Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Modeling and Analysis of Fully Electric and Hydrogen-Powered Bradley Fighting Vehicles

2023-04-11
2023-01-0119
As the U.S. Army moves to electrify portions of its vehicle fleet, it is worth considering the heavier combat vehicles. However, the high power demand of these vehicles coupled with the relatively low energy density of modern batteries result in electric vehicles with limited range and functionality. Hydrogen-based fuel cells are an alternative to batteries that can provide many of the same environmental and logistical benefits associated with electrification. This study models the energy consumption for two variants of the M2A4 Bradley Fighting Vehicle (BFV). The first variant is powered by a hydrogen-based Proton Exchange Membrane Fuel Cell; the second variant is powered through lithium-ion batteries. These models account for vehicle weight, accelerative forces, drag, road grade, tractive losses, and ancillary equipment and are compared against a conventional M2A4 BFV.
Technical Paper

Hybridization of US Army Combat Vehicles

2022-03-29
2022-01-0371
As the global automotive market shifts towards electric vehicles, the United States Army must naturally consider this alternative for its combat vehicles. Indeed, electric vehicles offer numerous tactical advantages over traditional diesel engines, including higher torque at lower speeds and lower signature. Unfortunately, full electrification of most military vehicles is not feasible due to the weight of the requisite battery pack. However, the Army can take advantage of electric vehicles through hybrid power trains. Hybrid options allow for quiet, resilient, and powerful vehicles that are less constrained by battery technology. This study looks at the feasibility of hybrid power systems for military vehicles including the Infantry Squad Vehicle, the High Mobility Multipurpose Wheeled Vehicle, and the Joint Light Tactical Vehicle.
Technical Paper

Analysis of Geo-Location Data to Determine Combat Vehicle Idling Times

2023-04-11
2023-01-0101
As the United States Army strives for electrification and hybridization of tactical and combat vehicles in alignment with its Climate Strategy, it is necessary to capture all aspects of the drive cycle. One key area for consideration is the amount of time that the vehicles spend idling. Indeed, military vehicles can idle for a considerable amount of time, especially given that soldiers must keep their vehicles running to power critical electronic subsystems. Current, standardized drive cycles do not fully capture the degree that military vehicles idle. This study begins to address this gap by analyzing geo-location data collected from the National Training Center (NTC) for several different tactical vehicles including the High Mobility Multipurpose Wheeled Vehicle (HMMWV), the Bradley Fighting Vehicle, and the Abrams Main Battle Tank. This paper details the extraction, cleaning, and analysis of the geo-location data.
Technical Paper

Analysis of Geo-Location Data to Understand Power and Energy Requirements for Main Battle Tanks

2024-04-09
2024-01-2658
Tanks play a pivotal role in swiftly deploying firepower across dynamic battlefields. The core of tank mobility lies within their powertrains, driven by diesel engines or gas turbines. To better understand the benefits of each power system, this study uses geo-location data from the National Training Center to understand the power and energy requirements from a main battle tank over an 18-day rotation. This paper details the extraction, cleaning, and analysis of the geo-location data to produce a series of representative drive cycles for an NTC rotation. These drive-cycles serve as a basis for evaluating powertrain demands, chiefly focusing on fuel efficiency. Notably, findings reveal that substantial idling periods in tank operations contribute to diesel engines exhibiting notably lower fuel consumption compared to gas turbines. Nonetheless, gas turbines present several merits over diesel engines, notably an enhanced power-to-weight ratio and superior power delivery.
Technical Paper

Optimal Use Cases for Electric and Hybrid Tactical Vehicles

2024-04-09
2024-01-2662
In alignment with the U.S. Army's Climate Strategy and the broader trend in automotive technology, there is a strategic shift towards electrification and hybridization of the vehicle fleet. While a major goal of this effort is to mitigate the carbon footprint of the U.S. Army's vehicle operations, this transition also presents an opportunity to harness advancements in automotive electrification. Among the key vehicles in focus are tactical wheeled vehicles, which provide military forces with versatile and rugged transportation solutions for various combat scenarios, ensuring mobility, protection, and adaptability on the battlefield. This study investigates the potential of electrified tactical wheeled vehicles by conducting a survey involving a diverse group of vehicle operators across various ranks within the U.S. Army.
X