Refine Your Search

Search Results

Technical Paper

A Numerical Model for Piston Pin Lubrication in Internal Combustion Engines

2020-09-15
2020-01-2228
As the piston pin works under significant mechanical load, it is susceptible to wear, seizure, and structural failure, especially in heavy duty internal combustion engines. It has been found that the friction loss associated with the pin is comparable to that of the piston, and can be reduced when the interface geometry is properly modified. However, the mechanism that leads to such friction reduction, as well as the approaches towards further improvement, remain unknown. This work develops a piston pin lubrication model capable of simulating the interaction between the pin, the piston, and the connecting rod. The model integrates dynamics, solid contact, oil transport, and lubrication theory, and applies an efficient numerical scheme with second order accuracy to solve the highly stiff equations. As a first approach, the current model assumes every component to be rigid.
Journal Article

Development and Application of Ring-Pack Model Integrating Global and Local Processes. Part 1: Gas Pressure and Dynamic Behavior of Piston Ring Pack

2017-03-28
2017-01-1043
A new ring pack model has been developed based on the curved beam finite element method. This paper describes the first part of this model: simulating gas pressure in different regions above piston skirt and ring dynamic behavior of two compression rings and a twin-land oil control ring. The model allows separate grid divisions to resolve ring structure dynamics, local force/pressure generation, and gas pressure distribution. Doing so enables the model to capture both global and local processes at their proper length scales. The effects of bore distortion, piston secondary motion, and groove distortion are considered. Gas flows, gas pressure distribution in the ring pack, and ring structural dynamics are coupled with ring-groove and ring-liner interactions, and an implicit scheme is employed to ensure numerical stability. The model is applied to a passenger car engine to demonstrate its ability to predict global and local effects on ring dynamics and oil transport.
Journal Article

Oil Transport from Scraper Ring Step to Liner at Low Engine Speeds and Effect of Dimensions of Scraper Ring Step

2016-04-05
2016-01-0495
In gasoline engines, a scraper ring with a step on the bottom outer edge is widely used as a second ring. However, there lacks a fundamental understanding on the effects of this feature and its dimensions on oil transport. Inspired by observations from visualization experiments, this work combining computational fluid dynamics (CFD) and theoretical analysis shows that oil can be trapped in the space bordered by a second ring step and the chamfer of a piston third land. The trapped oil can be released to a liner when the piston is approaching the top dead center (TDC). This additional oil on the liner becomes a potential source of oil consumption. Such oil transport has been observed at typically less than 1500rpm. Since road vehicles often operate in this speed range, the newly-observed oil trapping and release can be closely associated with oil consumption in gasoline engines. In this work, a comprehensive study on oil trapping and release will be demonstrated.
Technical Paper

Oil Transport Inside the Power Cylinder During Transient Load Changes

2007-04-16
2007-01-1054
This paper presents a study of lubricating oil transport and exchange in a four-stroke spark ignition engine while undergoing transient load changes. The study consisted of experiments with a single cylinder test engine utilizing 2D LIF (Two Dimensional Laser Induced Fluorescence) techniques to view real time oil transport and exchange, along with computer modeling to describe certain phenomenon observed during the experiments. The computer modeling results included ring dynamics and corresponding gas flows through different regions of the power cylinder. Under steady-state conditions and constant speed during the experiments, more oil was observed on the piston at low load than at high load. Therefore, a transition from low load to high load resulted in oil leaving the piston, and a transition from high load to low load resulted in oil being added to the piston.
Technical Paper

A Simplified Piston Secondary Motion Model Considering the Dynamic and Static Deformation of Piston Skirt and Cylinder Bore in Internal Combustion Engines

2008-06-23
2008-01-1612
A dry piston secondary dynamics model has been developed. This model includes the detailed piston and cylinder bore hot shape geometries, and piston deformations due to combustion pressure, axial inertia and interaction with the cylinder bore, but neglects the effects of the hydrodynamic lubrication at the piston - cylinder bore interface in order to achieve faster calculation times. The piston - cylinder bore friction is calculated using a user supplied friction coefficient. This model provides a very useful, fast tool for power cylinder system analysis, provided its limitations are understood.
Technical Paper

A Deterministic Model for Lubricant Transport within Complex Geometry under Sliding Contact and its Application in the Interaction between the Oil Control Ring and Rough Liner in Internal Combustion Engines

2008-06-23
2008-01-1615
A general deterministic hydrodynamic lubrication model [1] was modified to study the interaction between a Twin Land Oil Control Ring (TLOCR) and a liner with cross-hatch liner finish. Efforts were made to customize the general model to simulate the particular sliding condition of TLOCR/liner interaction with proper boundary conditions. The results show that model is consistent, robust, and efficient. The lubricant mass conservation was justified and discussed. Then analysis was conducted on the lubricant transport between the deep grooves/valleys and plateau part of the surface to illustrate the importance of deep grooves in oil supply to the plateau part and hydrodynamic pressure generation. Furthermore, since the TLOCR land running surface is completely flat and parallel to the nominal liner axis, the liner finish micro geometry is fully responsible for the hydrodynamic pressure rise, which was found to be sufficient to support significant portion of the total ring radial load.
Technical Paper

The Influences of Cylinder Liner Honing Patterns and Oil Control Ring Design Parameters on the Interaction between the Twinland Oil Control Ring and the Cylinder Liner in Internal Combustion Engines

2008-06-23
2008-01-1614
This paper discusses the influences of several cylinder liner honing surface geometrical features on the interaction between the piston twin land oil control ring (TLOCR) and the cylinder liner by using the deterministic hydrodynamic model [1] and the twin land oil control ring model [2]. Additionally, the key design parameters of the TLOCR, including ring tension and land axial width are studied. The results show significant effects of three liner honing surface features beyond height distribution, including plateau wavelength, groove density and honing angle in hydrodynamic pressure generation. The study in oil control ring design parameters reveals that both ring tension and land axial width have important influences on friction and oil consumption, and their competing effects are discussed subsequently.
Technical Paper

An Experimental Study of the Time Scales and Controlling Factors Affecting Drastic Blow-by Increases during Transient Load Changes in SI Engines

2008-04-14
2008-01-0794
This paper presents the follow up to previous work done by Przesmitzki and Tian [1] studying large increases in blow-by in a spark ignition engine during transient load changes. This study examines the sensitivity of such blow-by spikes to differing intake pressures, and the time spent under both high and low intake pressure. The study consisted of experiments with a single cylinder test engine utilizing 2D LIF (Two Dimensional Laser Induced Fluorescence) techniques to view real time oil transport and exchange, along with computer modeling to explain certain phenomenon observed during the experiments. The previous work found that a very large blow-by spike could occur upon a transition from low engine load to a high engine load. The hypothesis was the top ring groove was being filled with oil during low engine load. Thereafter, it was hypothesized a transition to high load resulted in radial collapse of the top ring, and the subsequent blow by spike.
Technical Paper

Modeling the Dynamics and Lubrication of Three Piece Oil Control Rings in Internal Combustion Engines

1998-10-19
982657
The oil control ring is the most critical component for oil consumption and friction from the piston system in internal combustion engines. Three-piece oil control rings are widely used in Spark Ignition (SI) engines. However, the dynamics and lubrication of three piece oil control rings have not been thoroughly studied from the theoretical point of view. In this work, a model was developed to predict side sealing, bore sealing, friction, and asperity contact between rails and groove as well as between rails and the liner in a Three Piece Oil Control Ring (TPOCR). The model couples the axial and twist dynamics of the two rails of TPOCR and the lubrication between two rails and the cylinder bore. Detailed rail/groove and rail/liner interactions were considered. The pressure distribution from oil squeezing and asperity contact between the flanks of the rails and the groove were both considered for rail/groove interaction.
Technical Paper

Development and Applications of an Analytical Tool for Piston Ring Design

2003-10-27
2003-01-3112
A comprehensive and robust analytical tool was developed to study three-dimensional (3D) ring-bore and ring-groove interactions for piston rings with either symmetric or asymmetric cross-section. The structural response of the ring is modeled with 3D finite element beam method, and the interfaces between the ring and the bore as well as between the ring and the groove are modeled with a simple asperity contact model. Given the ring free shape and the geometry of the cross-section, this analytical tool can be used to evaluate the ring-bore and ring-groove conformability as well as ring twist angle distribution under different constraints. Conversely, this tool can be used to calculate the free shape to provide the desired ring-bore contact pressure distribution for specific applications.
Technical Paper

An Experimental Study of Piston Skirt Roughness and Profiles on Piston Friction Using the Floating Liner Engine

2016-04-05
2016-01-1043
The piston skirt is an important contributor of friction in the piston assembly. This paper discusses friction contributions from various aspects of the piston skirt. A brief study of piston skirt patterns is presented, with little gains being made by patterning the piston skirt coating. Next the roughness of the piston skirt coating is analyzed, and results show that reducing piston skirt roughness can have positive effects on friction reduction. Finally, an introductory study into the profile of the piston skirt is presented, with the outcome being that friction reduction is possible by optimizing the skirt profile.
Technical Paper

A One-Line Correlation for Predicting Oil Vaporization from Liner for IC Engines

2018-04-03
2018-01-0162
The increasingly stringent regulations for fuel economy and emissions require better optimization and control of oil consumption. One of the primary mechanisms of oil consumption is vaporization from the liner; we consider this as the “minimum oil consumption (MOC).” This paper presents a physical-mathematical cycle model for predicting the MOC. The numerical simulations suggest that the MOC is markedly sensitive to oil volatility, liner temperature, engine load and speed but less sensitive to oil film thickness. A one-line correlation is proposed for quick MOC estimations. It is shown to have <15% error compared to the cycle MOC computation. In the “dry region” (between top ring and OCR at the TDC), oil is depleted due to high heat and continual exposure to the combustion chamber.
Technical Paper

A Numerical and Experimental Study of Twin-land Oil Control Ring Friction in Internal Combustion Engines Part 2

2012-04-16
2012-01-1321
A twin-land oil control ring (TLOCR) model is used to evaluate TLOCR friction and the results are compared to the experiment measurement in a single cylinder floating liner engine under motoring condition. The model is based on a correlation between the hydrodynamic pressure and film thickness, which is generated using a deterministic model. The well-known three-regime lubrication is predicted with the model for ring with different ring tensions under various engine running conditions. A good match is found for the model and experiment results.
Technical Paper

Modeling the Evolution of Fuel and Lubricant Interactions on the Liner in Internal Combustion Engines

2018-04-03
2018-01-0279
In internal combustion engines, a portion of liquid fuel spray may directly land on the liner and mix with oil (lubricant), forming a fuel-oil film (~10μm) that is much thicker than the original oil film (~0.1μm). When the piston retracts in the compression stroke, the fuel-oil mixture may have not been fully vaporized and can be scraped by the top ring into the 1st land crevice and eventually enter the combustion chamber in the format of droplets. Studies have shown that this mechanism is possibly a leading cause for low-speed pre-ignition (LSPI) as the droplets contain oil that has a much lower self-ignition temperature than pure fuel. In this interest, this work aims to study the oil-fuel interactions on the liner during an engine cycle, addressing molecular diffusion (in the liquid film) and vaporization (at the liquid-gas interface) to quantify the amount of fuel and oil that are subject to scraping by the top ring, thereby exploring their implications on LSPI and friction.
Technical Paper

A Numerical Model of Piston Secondary Motion and Piston Slap in Partially Flooded Elastohydrodynamic Skirt Lubrication

1994-03-01
940696
This paper presents a numerical model of the rotational and lateral dynamics of the piston (secondary motion) and piston slap in mixed lubrication. Piston dynamic behavior, frictional and impact forces are predicted as functions of crank angle. The model considers piston skirt surface waviness, roughness, skirt profile, thermal and mechanical deformations. The model considers partially-flooded skirt and calculates the pressure distributions and friction in the piston skirt region for both hydrodynamic and boundary lubrication. Model predictions are compared with measurements of piston position using gap sensors in a single-cylinder engine and the comparison between theory and measurement shows remarkable agreement.
Technical Paper

Modeling and Optimizing Honing Texture for Reduced Friction in Internal Combustion Engines

2006-04-03
2006-01-0647
Frictional losses in the piston ring-pack of an engine account for approximately half of the total frictional losses within the power cylinder of an engine. Three-dimensional honing groove texture was modeled, and its effect on piston ring-pack friction and engine brake thermal efficiency was investigated. Adverse effects on engine oil consumption and durability were also considered. Although many non-conventional cylinder liner finishes are now being developed to reduce friction and oil consumption, the effects of surface finish on ring-pack performance is not well understood. A rough surface flow simulation program was developed to calculate flow and stress factors that adjust the solution of the Reynolds equation for the effects of surface roughness as has been done in the literature. Rough surface contact between the ring and liner was modeled using a previously published methodology for asperity contact pressure estimation between rough surfaces.
Technical Paper

An Experimental Study of Oil Transport between the Piston Ring Pack and Cylinder Liner

2005-10-24
2005-01-3823
The paper presents a detailed study of a unique lubricating oil transport and exchange path that is important for friction, wear, and oil consumption in a 4 stroke spark ignition engine, namely the oil flow from the piston to the cylinder liner. The study consisted of experiments with a test engine utilizing 2D LIF (Two Dimensional Laser Induced Fluorescence) techniques to view real time oil transport and exchange, along with computer modeling. The effects of engine speed, load, and oil ring design were included as part of the research. The test conditions ranged from 800 RPM to 4500 RPM, while the load was varied from closed throttle to wide open throttle. Several different oil control ring designs were utilized, including U-Flex, Twin-Land, and 3-Piece. Oil transport and exchange from the piston to the liner was observed under several different engine conditions, typically moderate to high engine speeds and low loads.
Technical Paper

Modeling Piston Ring-Pack Lubrication With Consideration of Ring Structural Response

2005-04-11
2005-01-1641
The lubrication of the piston ring-pack is directly related to the engine friction and oil consumption. Non-axisymmetric characteristics of the power cylinder system, most noticeably cylinder bore distortion, piston secondary motion, and ring gaps, can introduce circumferential variations to ring/liner lubrication and overall performance of the ring-pack in friction and oil consumption. In order to be able to optimize the piston ring-pack in a more fundamental way, it is necessary to develop physical understanding of the effects of these non-axisymmetric properties and effective numerical tools. In this study, a comprehensive model has been developed for the lubrication of a piston ring-pack. By employing a finite element analysis, this model is capable of evaluating the in-plane structural response of a ring to external forces. A newly developed one-dimensional hydrodynamic lubrication sub-model is implemented to calculate the lubrication force at each cross-section.
Technical Paper

Implementation and Improvements of a Flow Continuity Algorithm in Modeling Ring/Liner Lubrication

2005-04-11
2005-01-1642
Based upon a hydrodynamic lubrication model used in journal bearing simulation, a one-dimensional flow continuity algorithm was developed in modeling ring-liner lubrication. By applying a “universal” differential equation to the entire ring-liner interface, the starting and ending points of full film can be located automatically. Considering the oil flow difference in the regions partially filled by oil between the ring/liner lubrication and bearing lubrication, the traditional assumption that the streams of oil and oil-vapor/air attach to both surfaces was relaxed in this model. Corresponding to this improvement, a transition region was introduced to smooth out the discontinuity of convection flow at the interface between a region fully filled by oil and a region partially filled by oil. Moreover, a distribution of standard pressure, which is crucial in formulating the universal differential equation, was proposed.
Technical Paper

Reliable Processes of Simulating Liner Roughness and Its Lubrication Properties

2019-04-02
2019-01-0178
Topology of liner finish is critical to the performance of internal combustion engines. Proper liner finish simulation processes lead to efficient engine design and research. Fourier methods have been well studied to numerically generate liner topology. However, three major issues wait to be addressed to make the generation processes feasible and reliable. First, in order to simulate real plateau honed liners, approaches should be developed to calculate accurate liner geometric parameters. These parameters are served as the input of the generation algorithm. Material ratio curve, the common geometry calculation method, should be modified so that accurate root mean square of plateau height distribution could be obtained. Second, the set of geometric parameters used in generating liner finish (ISO 13565-2) is different from the set of parameters used in manufacturing industry (ISO 13565-3). Quantitative relations between these two sets should be studied.
X