Refine Your Search

Topic

Search Results

Journal Article

Utilization of Man Power, Increment in Productivity by Using Lean Management in Kitting Area of Engine Manufacturing Facility - A Case Study

2018-08-08
Abstract The project of lean management is implemented in General Motors India Private Limited, Pune, India plant. The aim of the project is to improve manpower utilization by removing seven types of wastes using lean management system in kitting process. Lean manufacturing or management is the soul of Just-In-Time philosophy and is not new in Automobile manufacture sector where it born. Kitting area is analogs to the modern supermarket where required components, parts, consumables, subassemblies are kept in bins. These bins are placed in racks so that choosing right part at right time can be achieved easily. Video recording, in-person observation, feedback from online operators and other departments such as maintenance, control, supply chain etc. are taken. It is observed that the work content performed by current strength of operators can be performed by less number of operators. After executing this project, it was possible to reduce one operator and increase manpower utilization.
Journal Article

Evaluation of the Energy Consumption of a Thermal Management System of a Plug-In Hybrid Electric Vehicle Using the Example of the Audi Q7 e-tron

2018-06-18
Abstract The transition of vehicle propulsion technologies away from conventional internal combustion engines toward more electrically dominant systems such as plug-in hybrid electric vehicles (PHEV) poses new challenges for vehicle thermal management systems. Especially at low ambient temperatures, consumer demand for cabin comfort as well as legislatively imposed safety considerations significantly reduce the electric driving range because only electric energy can be used for heating during emissions-free driving modes. Recent developments to find energy efficient thermal management systems for electric and plug-in electric vehicles have led to the implementation of automotive heat pump systems. As an alternative approach to meet dynamic heating demands and safety regulations, these systems use heat at a low temperature level, for example the waste heat of electric drivetrain components, to heat the passenger compartment efficiently and therefore increase the electric driving range.
Journal Article

Study of Wedge-Actuated Continuously Variable Transmission

2021-08-23
Abstract The mechanical efficiency of the current continuously variable transmission (CVT) suffers from high pump loss induced by a high-pressure system. A novel wedge mechanism is designed into the CVT clamp actuation system to generate the majority of clamp force mechanically. Therefore, the hydraulic system can operate at a low-pressure level most of the time, and the pump loss is greatly reduced to improve the CVT’s mechanical efficiency. Through dynamic analysis and design optimization, 90% of clamp force is contributed by the wedge mechanism and the rest of the 10% is generated by a conventional hydraulic system. The optimal design is validated through dynamic modeling using Siemens Virtual.Lab software by simulating the wedge clamp force generation, ratio change dynamics, and system response under tip-in conditions. After that, we built prototype components that target 70% of the clamp force contributed by the wedge mechanism and tested them on a transmission dynamometer.
Journal Article

Fault Diagnosis Approach for Roller Bearings Based on Optimal Morlet Wavelet De-Noising and Auto-Correlation Enhancement

2019-05-02
Abstract This article presents a fault diagnosis approach for roller bearing by applying the autocorrelation approach to filtered vibration measured signal. An optimal Morlet wavelet filter is applied to eliminate the frequency associated with interferential vibrations; the raw measured signal is filtered with a band-pass filter based on a Morlet wavelet function whose parameters are optimized based on maximum Kurtosis. Autocorrelation enhancement is applied to the filtered signal to further reduce the residual in-band noise and highlight the periodic impulsive feature. The proposed technique is used to analyze the experimental measured signal of investigated vehicle gearbox. An artificial fault is introduced in vehicle gearbox bearing an orthogonal placed groove on the inner race with the initial width of 0.6 mm approximately. The faulted bearing is a roller bearing located on the gearbox input shaft - on the clutch side.
Journal Article

Application of a New Method for Comparing the Overall Energy Consumption of Different Automotive Thermal Management Systems

2018-10-03
Abstract This article applies a new method for the evaluation and estimation of real-life energy consumption of two different thermal management systems based on driving behavior in the course of the day. Recent attempts to find energy-efficient thermal management systems for electric and plug-in hybrid electric vehicles have led to using secondary loop systems as an alternative approach for meeting dynamic heating and cooling demands and reducing refrigerant charge. However, the additional layer of thermal resistance, which influences the system’s transient behavior as well as passenger compartment comfort during cool-down or heat-up, makes it difficult to estimate the annual energy consumption. In this article, the overall energy consumption of a conventional and a secondary loop system is compared using a new method for describing actual customers’ driving behavior in the course of the day.
Journal Article

Experimental Study on the Internal Resistance and Heat Generation Characteristics of Lithium Ion Power Battery with NCM/C Material System

2018-04-18
Abstract Heat generation characteristics of lithium ion batteries are vital for both the optimization of the battery cells and thermal management system design of battery packs. Compared with other factors, internal resistance has great influence on the thermal behavior of Li-ion batteries. Focus on a 3 Ah pouch type battery cell with the NCM/C material system, this paper quantitatively evaluates the battery heat generation behavior using an Extended Volume-Accelerating Rate Calorimeter in combination with a battery cycler. Also, internal resistances of the battery cell are measured using both the hybrid pulse power characteristic (HPPC) and electro-chemical impedance spectroscopy (EIS) methods. Experimental results show that the overall internal resistance obtained by the EIS method is close to the ohmic resistance measured by the HPPC method. Heat generation power of the battery cell is small during discharge processes lower than 0.5 C-rate.
Journal Article

Metallurgical Approach for Improving Life and Brinell Resistance in Wheel Hub Units

2017-09-17
Abstract Raceway Brinell damage is one major cause of wheel bearing (hub unit) noise during driving. Original Equipment Manufacturer (OEM) customers have asked continuously for its improvement to the wheel bearing supply base. Generally, raceway Brinelling in a wheel hub unit is a consequence of metallic yielding from high external loading in a severe environment usually involving a side impact to the wheel and tire. Thus, increasing the yielding strength of steel can lead to higher resistance to Brinell damage. Both the outer ring and hub based on Generation 3 (Gen. 3) wheel unit are typically manufactured using by AISI 1055 bearing quality steel (BQS); these components undergo controlled cooling to establish the core properties then case hardening via induction hardening (IH). This paper presents a modified grade of steel and its IH design that targets longer life and improves Brinell resistance developed by ILJIN AMRC (Advanced Materials Research Center).
Journal Article

Design and Analysis of a Formula SAE Vehicle Chain Sprocket under Static and Fatigue Loading Conditions

2021-04-13
Abstract In this study, an attempt is made to deduce the number of teeth in the driven sprocket of a Formula SAE (FSAE) car using Optimum Lap software based on track run simulation of the car, which comes out to be 51 teeth. The sprocket material was selected as Aluminum Alloy AL-7075 T6 because of its strength-to-weight ratio. In addition to it, the generative design strategy by Fusion-360 was utilized to automatically engender the slotted sprocket design on the ground of stress induced on it during operation. Furthermore, the design was verified virtually carrying out static structural and fatigue analysis under the worst-case scenario in CAE software. The overall weight reduction achieved was around 45%. Furthermore, the center-to-center distance between the sprockets and the number of chain links required were also calculated on the basis of space constraints and the wrap angle of the sprocket.
Journal Article

Stability Analysis of Combined Braking System of Tractor-Semitrailer Based on Phase-Plane Method

2018-06-04
Abstract An analysis method for the stability of combined braking system of tractor-semitrailer based on phase-plane is investigated. Based on a 9 degree of freedom model, considering longitudinal load transfer, nonlinear model of tire and other factors, the braking stability of tractor-semitrailer is analyzed graphically on the phase plane. The stability of both tractor and semitrailer with different retarder gear is validated with the energy plane, β plane, yaw angle plane and hinged angle plane. The result indicates that in the long downhill with curve condition, both tractor and semitrailer show good stability when retarder is working at 1st and 2nd gear, and when it is at 3rd gear, the tractor is close to be unstable while semitrailer is unstable already. Besides, tractor and semitrailer both lose stability when retarder is working at the 4th gear.
Journal Article

Machining Quality Analysis of Powertrain Components Using Plane Strain Finite Element Cutting Models

2018-05-07
Abstract Finite Element Analysis (FEA) of metal cutting is largely the domain of research organizations. Despite significant advances towards accurately modelling metal machining processes, industrial adoption of these advances has been limited. Academic studies, which mainly focused on orthogonal cutting, fail to address this discrepancy. This paper bridges the gap between simplistic orthogonal cutting models and the complex components typical in the manufacturing sector. This paper outlines how to utilize results from orthogonal cutting simulations to predict industrially relevant performance measures efficiently. In this approach, using 2D FEA cutting models a range of feed, speed and rake angles are simulated. Cutting force coefficients are then fit to the predicted cutting forces. Using these coefficients, forces for 3D cutting geometries are calculated.
Journal Article

Modeling the Effect of Foam Density and Strain Rate on the Compressive Response of Polyurethane Foams

2018-05-08
Abstract Due to the high deformability and energy dissipation capacity of polymer foams in compression, they are used in automotive applications to mitigate mechanical impacts. The mechanical response of the foams is strongly affected by their density. Phenomenological relations have been proposed to describe the effect of foam density on their stress-strain response in compression at a fixed loading rate and the effect of loading rate at a fixed foam density. In the present work, these empirical approaches are combined allowing for the dependence of loading rate effect in compression on foam density. The minimum experimental data set for calibration of the proposed model consists of compression test results at two different loading rates of foams with two different densities.
Journal Article

Increased Thread Load Capability of Bolted Joints in Light Weight Design

2017-06-29
Abstract Within the scope of today’s product development in automotive engineering, the aim is to produce lighter and solid parts with higher capabilities. On the one hand lightweight materials such as aluminum or magnesium are used, but on the other hand, increased stresses on these components cause higher bolt forces in joining technology. Therefore screws with very high strength rise in importance. At the same time, users need reliable and effective design methods to develop new products at reasonable cost in short time. The bolted joints require a special structural design of the thread engagement in low-strength components. Hence an extension of existing dimensioning of the thread engagement for modern requirements is necessary. In the context of this contribution, this will be addressed in two ways: on one hand extreme situations (low strength nut components and high-strength fasteners) are considered.
Journal Article

Dynamic and Friction Loss Analysis of the Vane in the Revolving Vane Compressor with the External Driving System

2021-05-25
Abstract The most important and most easily damaged part of a revolving vane (RV) compressor is the vane. The friction loss of the vane determines the service life and maintenance cost of the RV compressor to a certain extent. To improve the efficiency and prolong the service life of the RV compressor, it is of great significance to analyze the dynamics of the vane and reduce the friction loss of the vane. In this article, a scheme is proposed to reduce the friction at the vane’s sides for the RV compressor. In the proposed scheme, the force acting on the vane tip due to the cylinder inertia is eliminated by driving the rotor and cylinder externally and separately; thus the friction loss at the vane’s sides is reduced. Calculations show that eliminating the effect of cylinder inertia can reduce the friction loss at the vane’s sides from 44.9 W to 24.7 W.
Journal Article

Development of a Catalytic Converter Cool-Down Model to Investigate Intermittent Engine Operation in HEVs

2018-10-29
Abstract Catalytic converters, a primary component in most automotive emissions control systems, do not function well until they are heated substantially above ambient temperature. As the primary energy for catalyst heating comes from engine exhaust gases, plug-in hybrid electric vehicles (PHEVs) that have the potential for short and infrequent use of their onboard engine may have limited energy available for catalytic converter heating. This article presents a comparison of multiple hybrid supervisory control strategies to determine the ability to avoid engine cold starts during a blended charge-depleting propulsion mode. Full vehicle and catalytic converter simulations are performed in parallel with engine dynamometer testing in order to examine catalyst temperature variations during the course of the US06 City drive cycle. Emissions and energy consumption (E&EC) calculations are also performed to determine the effective number of engine starts during the drive cycle.
Journal Article

Simulation Study on Influence of Environmental Temperature on Current-Carrying Capacity of Automotive Electrical Connector

2021-11-12
Abstract The purpose of this article is to reduce the adverse effects of temperature rise on the electrical connector, reduce the failure risk of electrical connector due to the mismatch of current-carrying capacity selection, and improve the service life of the electrical connector. This article takes a certain type of vehicle electric connector as the research object. An accurate contact pair model of the electrical connector is established by SOLIDWORKS software. The force and thermoelectric coupling simulation analysis of the 3D solid model with reasonable load and boundary conditions was carried out by ABAQUS software. The results show that the insertion force and positive force of the electrical connector terminal are in line with the values specified in the standard.
Journal Article

Discussion on Charging Control Strategy for Power Battery at Low Temperatures

2017-10-08
Abstract In the case of electric vehicles, due to the charging current limitation of lithium battery at low temperatures (below -20°C), it has been proposed to heat the battery pack up to a suitable temperature range before charging through a liquid-heating plate with PTC. However, at a low state of charge (SOC), there is a question which one could take the place of battery pack to supply power for PTC when heating. So that off-board charger (OFC) has been considered to supply power for PTC in this paper. In order to control the current charging into the battery pack as less as possible at low temperatures, three control schemes of battery management system (BMS) are proposed and compared. Scheme 1: BMS controls the value of charging current request close to the working current of PTC. Scheme 2: BMS controls the value of charging voltage request to reach a state of relative balance. Scheme 3: BMS disconnects the pack from the charger and keeps the connection between PTC and charger.
Journal Article

Innovative Approach of Wedge Washer to Avoid Bolt Loosening in Automotive Applications

2017-10-08
Abstract Automotive vehicle includes various systems like engine, transmission, exhaust, air intake, cooling and many more systems. No doubt the performance of individual system depends upon their core design. But for performance, the system needs to be fastened properly. In automotive, most of the joints used fasteners which helps in serviceability of the components. There are more than thousands of fasteners used in the vehicle. At various locations, we found issue of bolt loosening and because of this design intent performance has not met by the system. During product development of ECS (Engine cooling system), various issues reported to loosening the bolt. The pre-mature failure of bolt loosening, increases the interest in young engineers for understanding the behavior of fastener in vehicle running conditions. This paper focuses on the design of wedge shape of washer to avoid bolt loosening.
Journal Article

Optimizing Cooling Fan Power Consumption for Improving Diesel Engine Fuel Efficiency Using CFD Technique

2019-06-11
Abstract Fan cooling system of an air-cooled diesel engine is optimized using 3D CFD numerical simulation approach. The main objective of this article is to increase engine fuel efficiency by reducing fan power consumption. It is achieved by optimizing airflow rates and flow distribution over the engine surfaces to keep the maximum temperature of engine oil and engine surfaces well within the lubrication and material limit, respectively, at the expense of lower fan power. Based on basic fan laws, a bigger fan consumes lesser power for the same airflow rate as compared to a smaller fan, provided both fans have similar efficiency. Flow analysis is also conducted with the engine head and block modeled as solid medium and fan cooling system as fluid domain. Reynolds-averaged Navier-Stokes turbulence (RANS) equations were solved to get the flow field inside the cooling system and on the engine liner fins. The Moving Reference Frame approach was used for simulating the rotation of a fan.
Journal Article

A Guide to Uncertainty Quantification for Experimental Engine Research and Heat Release Analysis

2019-08-22
Abstract Performing an uncertainty analysis for complex measurement tasks, such as those found in engine research, presents unique challenges. Also, because of the excessive computational costs, modeling-based approaches, such as a Monte Carlo approach, may not be practical. This work provides a traditional statistical approach to uncertainty analysis that incorporates the uncertainty tree, which is a graphical tool for complex uncertainty analysis. Approaches to calculate the required sensitivities are discussed, including issues associated with numerical differentiation, numerical integration, and post-processing. Trimming of the uncertainty tree to remove insignificant contributions is discussed. The article concludes with a best practices guide in the Appendix to uncertainty propagation in experimental engine combustion post-processing, which includes suggested post-processing techniques and down-selected functional relationships for uncertainty propagation.
Journal Article

Numerical Aspects Affecting Heat Transfer in ICE Applications and Definition of a Temperature Wall Function Accounting for the Boundary Layer Compressibility

2019-08-22
Abstract The heat transfer phenomena in Internal Combustion Engines (ICEs) are one of the main research topics that need to be addressed to enhance the performance in terms of power, efficiency, emissions and reliability. The present study is focused on the evaluation of the in-cylinder heat fluxes through the use of Computational Fluid Dynamic (CFD) simulations, with a wall function approach. In particular, the aim of this work is to present a new fully non-isothermal wall function obtained from the one-dimensional (1-D) energy balance equation for turbulent flows in the boundary layers, specifying all the steps and assumptions which have carried to the final fully compressible formulation. The new proposed wall function has been validated against experimental data of the General Motors (GM) Pancake Engine, representative of low Brake Mean Effective Pressure (bmep) operating point, comparing the results with other existing wall functions.
X