Refine Your Search

Topic

Author

Search Results

Standard

Brake Dynamometer Squeal Noise Test Procedure for Regenerative Systems

2019-09-19
WIP
J3211
The SAE J3211 procedure applies to brake squeal evaluation using single-ended inertia dynamometers for friction couples used on vehicles with regenerative braking systems. This RP applies to squeal noise occurrences for on-road passenger cars and light trucks with a gross vehicle weight rating of 4536 kg or below. The procedure incorporates aspects related to (a) minimum inertia dynamometer capabilties, (b) fixture requirements and setup, and (c) test sequences with emphasis on brake temperatures, brake pressure profiles, and strategies to represent brake blending.
Standard

DIESEL ENGINES—DIESEL FUEL—PERFORMANCE REQUIREMENT AND TEST METHOD FOR ASSESSING FUEL LUBRICITY

1995-06-01
HISTORICAL
J2265_199506
This SAE Standard specifies: a test method for assessing the lubricating property of diesel fuels including those which may contain a lubricity enhancing additive, and the performance criteria necessary to ensure reliable operation of diesel fuel injection equipment with respect to fuel lubrication of such equipment. It applies to fuel used in diesel engines.
Standard

PMODE for In-Vehicle Networks

2001-12-19
CURRENT
J2590_200112
This SAE Recommended Practice describes the power mode requirements for in-vehicle networks that conform to the Automotive Multimedia Interface Collaboration (AMI-C) specifications. These networks include, but are not limited to, the IDB-C (SAE J2366), IDB-1394, and MOST. This version of the document covers primarily IDB-C and may be revised when the PMODE requirements for the other networks are more fully developed by AMI-C.
Standard

ELECTROPLATE REQUIREMENTS FOR DECORATIVE CHROMIUM DEPOSITS ON ZINC BASE MATERIALS USED FOR EXTERIOR ORNAMENTATION

1991-06-01
HISTORICAL
J1837_199106
This SAE Standard covers the physical and performance requirements for electrodeposited copper, nickel, and chromium deposits on exterior ornamentation fabricated from die cast zinc alloys (SAE J468 alloys 903 and 925), and wrought zinc strip (ASTM B 69). This type of coating is designed to provide a high degree of corrosion resistance for automotive, truck, marine, and farm usage where a bright, decorative finish is desired.
Standard

Electroplate Requirements for Decorative Chromium Deposits on Zinc Base Materials Used for Exterior Ornamentation

2017-12-20
CURRENT
J1837_201712
This SAE Standard covers the physical and performance requirements for electrodeposited copper, nickel, and chromium deposits on exterior ornamentation fabricated from die cast zinc alloys (SAE J468 alloys 903 and 925), and wrought zinc strip (ASTM B 69). This type of coating is designed to provide a high degree of corrosion resistance for automotive, truck, marine, and farm usage where a bright, decorative finish is desired.
Standard

Overlap Shear Test for Sealant Adhesive Bonding of Automotive Glass Encapsulating Material to Body Opening

2021-01-07
CURRENT
J1836_202101
This recommended practice defines a procedure for the construction of a lap shear specimen for the purpose of testing the bondability of an automotive sealant adhesive to the elastomeric material used in automotive encapsulating. The present practice of encapsulating automotive glass is described as molding elastomeric material onto the outer edge of the glass using thermoplastic or thermosetting material that quickly sets in the mold. The glass is removed from the mold with cured elastomeric material bonded to the perimeter of thee glass. This encapsulated glass module can now be bonded with a sealant adhesive into the body opening of a vehicle.
Standard

OVERLAP SHEAR TEST FOR SEALANT ADHESIVE BONDING OF AUTOMOTIVE GLASS ENCAPSULATING MATERIAL TO BODY OPENING

1988-10-01
HISTORICAL
J1836_198810
This recommended practice defines a procedure for the construction of a lap shear specimen for the purpose of testing the bondability of an automotive sealant adhesive to the elastomeric material used in automotive encapsulating. The present practice of encapsulating automotive glass is described as molding elastomeric material onto the outer edge of the glass using thermoplastic or thermosetting material that quickly sets in the mold. The glass is removed from the mold with cured elastomeric material bonded to the perimeter of thee glass. This encapsulated glass module can now be bonded with a sealant adhesive into the body opening of a vehicle.
Standard

Abrasion Resistance Testing - Vehicle Exterior Graphics and Pin Striping

2021-01-07
CURRENT
J1847_202101
This SAE Recommended Practice applies to the abrasion resistance testing of decorative tapes, graphics, and pin striping. It may also have relevance to certain vehicle labels and plastic wood grain film. The resistance to abrasive damage is judged qualitatively by its effect on the legibility, pattern, and color of the graphic marking. This recommended practice is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this recommended practice.
Standard

Welded Flash Controlled, High Strength (690 MPa Tensile Strength) Low Alloy Steel Hydraulic Tubing, Stress Relieved Annealed for Bending and Double Flaring

2009-08-18
HISTORICAL
J2832_200908
This SAE Standard covers stress relieved electric resistance welded flash controlled single wall high strength low alloy steel tubing intended for use in high pressure hydraulic lines and in other applications requiring tubing of a quality suitable for bending, double flaring and cold forming. Material produced to this specification is not intended to be used for single flare applications due to the potential leak path that would be caused by the ID weld bead. The grade of material produced to this specification is of micro-alloy content and is considerably stronger and intended to service higher pressure applications using thinner walls than like sizes of the grades of material specified in SAE J356, SAE J2435 and SAE J2613. Due to the alloy content of the material, the forming characteristics of the finished tube are equal to or better, when compared to SAE J356, SAE J2435 and SAE J2613. Nominal reference working pressures for this tubing are listed in ISO 10763 and SAE J1065.
Standard

Hydraulic Pump Airborne Noise Bench Test

2006-11-08
HISTORICAL
J2747_200611
Communicate the process of accurately measuring sound power levels of positive displacement hydraulic pumps commonly used in ground vehicle steering systems. This recommended practice defines the pump mounting (pulley, belt tension, isolation), operating conditions (fluid, speed, temperature, pressure), room acoustics, instrumentation, noise measurement technique and data acquisition setup to be used. Included are recommendations for test sample size, and format for data presentation/reporting.
Standard

Hydraulic Pump Airborne Noise Bench Test

2019-09-13
CURRENT
J2747_201909
Communicate the process of accurately measuring sound power levels of positive displacement hydraulic pumps commonly used in ground vehicle steering systems. This recommended practice defines the pump mounting (pulley, belt tension, isolation), operating conditions (fluid, speed, temperature, pressure), room acoustics, instrumentation, noise measurement technique and data acquisition setup to be used. Included are recommendations for test sample size, and format for data presentation/reporting.
Standard

Laboratory Measurement of the Acoustical Performance of Body Cavity Filler Materials

2017-08-11
CURRENT
J2846_201708
This SAE Recommended Practice describes a laboratory test procedure for measuring the acoustical performance of a system consisting of a body cavity filler material formed into a rectangular cross-section channel. Materials for this test may include both heat reactive and chemically reactive products, with or without a shelf to simulate a baffle in an application, or a combination of body cavity filler and aluminum foil to enhance the performance. These materials are commonly installed in transportation systems such as ground vehicles, and thus reduce the noise propagation through the rails, rockers, and pillar/posts. This document is intended to rank order the acoustical performance of materials for application on channels using general automotive steel, such that the effects of sealing of pinch welds in addition to the material could be easily evaluated.
Standard

Laboratory Measurement of the Acoustical Performance of Body Cavity Filler Materials

2010-05-26
HISTORICAL
J2846_201005
This SAE Recommended Practice describes a laboratory test procedure for measuring the acoustical performance of a system consisting of a body cavity filler material formed into a rectangular cross-section channel. Materials for this test may include both heat reactive and chemically reactive products, with or without a shelf to simulate a baffle in an application, or a combination of body cavity filler and aluminum foil to enhance the performance. These materials are commonly installed in transportation systems such as ground vehicles, and thus reduce the noise propagation through the rails, rockers, and pillar/posts. This document is intended to rank order the acoustical performance of materials for application on channels using general automotive steel, such that the effects of sealing of pinch welds in addition to the material could be easily evaluated.
Standard

Laboratory Measurement of the Acoustical Performance of Body Cavity Filler Materials

2019-10-14
WIP
J2846
This SAE Recommended Practice describes a laboratory test procedure for measuring the acoustical performance of a system consisting of a body cavity filler material formed into a rectangular cross-section channel. Materials for this test may include both heat reactive and chemically reactive products, with or without a shelf to simulate a baffle in an application, or a combination of body cavity filler and aluminum foil to enhance the performance. These materials are commonly installed in transportation systems such as ground vehicles, and thus reduce the noise propagation through the rails, rockers, and pillar/posts. This document is intended to rank order the acoustical performance of materials for application on channels using general automotive steel, such that the effects of sealing of pinch welds in addition to the material could be easily evaluated.
X