Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Review of ASTM D-2882 Hardware Problems and Suggested Solutions

1998-09-14
982021
The ASTM test method D-2882 (Standard Test Method for Indicating the Wear Characteristics of Petroleum and Non-Petroleum Hydraulic Fluids in a Constant Volume Vane Pump) is widely used to evaluate hydraulic fluids. Performing this method can be difficult due to problems with the pump hardware and the written procedure. This paper discusses the problems and suggests possible remedies.
Technical Paper

Structure of Carburized Layers With High Wear Resistance

2002-03-19
2002-01-1392
The effect phase composition of carburized constructional steels with a particular focus on the influence of retained austenite and carbides on hardness, impact strength and wear resistance is described. It is shown that increasing retained austenite and carbide content of the hardened carburized layers exhibits useful properties.
Technical Paper

Assessment of the Eaton (Vickers) V-104C Vane Pump as an Anttiwear Lubrication Tester

2002-03-19
2002-01-1429
For many years the ASTM D2882 test method, using the V-104C Vane pump, served the industry well to evaluate the lubricating properties of hydraulic fluids at low pressures (< 2000 psi). However, at higher pressures in different types of pumps (i.e. piston pumps), this method may not be reliable enough to predict satisfactory lubrication performance in commercial applications. In this paper the V-104C pump will be evaluated in terms of vane contact force and film thickness parameters to assertain the possibility of using a modified bench test to better predict hydraulic fluid performance at higher pressures.
Technical Paper

Surface Modification Design: Carburizing With Atmospheres

2002-03-19
2002-01-1505
Atmosphere carburizing remains one of the most important surface treatment technologies throughout the world. In this paper, various important metallurgical design variables are identified by examining the results of the carburisation of 15HN steel. These results showed the importance of the formation of martensite-retained austenite-carbide microstructure after hardening. Increasing austenization temperature causes a decrease in the carbide fraction and an increase in the fraction of retained austenite. By optimisation of the composition of these microstructures through variation of carburisation process, hardening, and tempering variables, it is possible to optimise compressive stresses, abrasive wear resistance, and contact fatigue resistance.
Technical Paper

The Influence of Different Cooling Media on Properties of Carburized Layers

2002-03-19
2002-01-1481
Research results of structure and select properties (hardness, impact strength, wear resistance) carburized parts and tempered in three different cooling media: water, oil and aqueous polymer solutions are discussed. These results showed that structure and properties of case and core of carburized part is most profitable after using an aqueous polyalkylene glycol - PAG polymer solutions.
Technical Paper

Performance Map Characterization of Hydraulic Fluids

1994-09-01
941752
There is increasing interest in the development of bench tests to characterize the performance of hydraulic fluids in order to minimize the cost of testing and the volumes of fluid currently required for pump testing. One method which permits comprehensive characterization of the boundary, mixed EHD and EHD wear regimes encountered in pump lubrication is to develop a performance map. This paper discusses the use of this testing method to characterize the performance of two experimental hydraulic fluid formulations.
Technical Paper

Water-Glycol Hydraulic Fluid Evaluation by ASTM D 2882: Significant Contributors to Erroneous Results

1996-08-01
961740
One of the most commonly used tests to evaluate the antiwear properties of a hydraulic fluid is ASTM D 2882 which is based on a Vicker's V-104 vane pump. Although this is a commonly used test, the results are subject to numerous potential problems in both testing procedure and pump hardware. In this paper, the particular focus will be placed on potential problems that may be encountered with testing of water-glycol hydraulic fluids which may lead to erroneous and non-reproducible results.
X