Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

Fuel Accounting Analysis during Cranking and Startup using Simultaneous In-Cylinder and Exhaust Fast FID and NDIR Detectors

2008-04-14
2008-01-1309
Optimization of in-cylinder air-fuel mixture preparation in Port Fuel Injected (PFI) engines during all phases of operation is critical for maximizing engine performance while minimizing harmful emissions. In this study, a Cooperative Fuels Research (CFR) gasoline engine is used to evaluate torque and measure in-cylinder and exhaust CO, CO2 and unburned hydrocarbons under various fueling and spark conditions during crank and startup phases. Fast Flame Ionization Detectors (FFID) and Non-Dispersive Infra-Red (NDIR) fast CO and CO2 detectors are used as the principle diagnostics. Additionally, detailed cycle resolved fuel accounting is performed to elucidate the fuel vaporization process from injection to exhaust. The majority of liquid fuel accumulation in the engine puddles occurs within 3 engine cycles after cranking begins. Post combustion UHCs were seen to reach levels of 40-80% of pre-combustion UHC values.
Journal Article

Pre-Ignition Characteristics of Ethanol and E85 in a Spark Ignition Engine

2008-04-14
2008-01-0321
Ethanol based fuels have seen increased use in recent years due to their renewable nature as well as increased governmental regulatory mandates. While offering performance advantages over gasoline, especially at high compression ratios, these fuels are more sensitive to pre-ignition (PI). Pre-ignition experiments using ethanol (E100) and E85 were performed in a CFR spark ignition engine using a diesel glow plug “hot spot” to induce PI. PI is found to occur over a specific air-fuel ratio range based on hot spot temperature. Additionally, increasing ethanol content or compression ratio (CR) decreases glow plug temperature thresholds for PI. A kinetics-based model was used to simulate pre-ignition of E100 and to elucidate sensitivities of pre-ignition to various operating parameters, including initial charge temperature, air dilution, and residual dilution. The model shows that the most violent cases of PI can be mitigated by switching to either lean or rich operation.
Technical Paper

Combustion of Biodiesel- and Ethanol-Diesel Intake Injection Mixtures with

2007-10-29
2007-01-4011
Seven biofuel-diesel fuel configurations were tested in a single-cylinder research diesel CFR engine that allowed variable injection timing. These seven configurations included three biodiesel-diesel blends (20% and 100%); two ethanol-diesel blends (15% and 20%), and two cases in which ethanol was injected into the intake air flow (20% and 33%). Combustion characteristics, NOx emissions, and soot emissions were compared with diesel operation across a range of injection timings. The effect of fuel compressibility affected the timing of injection, with biodiesel-diesel blends having advanced injection and ethanol-diesel blends having delayed injection. Biodiesel-diesel blends showed reduced ignition delay with only modest changes in combustion duration, while ethanol-diesel mixtures showed longer ignition delay but much shorter combustion duration and earlier phasing.
Technical Paper

Cranking-Startup Intake Port and In-Cylinder Mixture Preparation Behavior in a CFR Gasoline Engine

2007-07-23
2007-01-1833
Engine startup experiments with intake port sampling were performed in a modified fuel injected single cylinder gasoline CFR research engine. Immediately after fuel injection, port fuel-air vapor sampling was performed in order to quantify the role of the fuel injector in creating a combustible mixture for the first cycle of engine startup. In-cylinder sampling was also performed to clarify the role of other mixture preparation mechanisms in the startup process. Sample analysis was performed using gas chromatography. Experimental data were also collected during steady-state operating conditions at the same intake port pressure and temperature as that of the first cranking cycle for comparison. Results show that approximately ½ to ¾ of a near stoichiometric combustible 1st cycle charge, as a function of first cycle fueling, is produced immediately after enriched cranking fuel injection.
Technical Paper

An Experimental and Modeling Investigation into the Comparative Knock and Performance Characteristics of E85, Gasohol [E10] and Regular Unleaded Gasoline [87 (R+M)/2]

2007-04-16
2007-01-0473
In the near future increasing use of ethanol in motor fuels will occur due to legislative mandates. E10 (Gasohol) and E85 will see more widespread use in spark ignition engines. This study looks at the performance and knock characteristics of E10 and E85 in comparison to regular gasoline. Detailed experimental engine data and analysis as a function of compression ratio, ignition timing and fueling are presented with associated physical explanations. Comparative results are presented. Increasing ethanol content provides for greater engine torque, efficiency and knock tolerance, yet fuel consumption worsens. Knock limited trends and sensitivities are presented, for example, 5 degrees of spark retard are required with E10 and gasoline for each compression ratio increase, while the much less sensitive E85 requires only 2 degrees of retard for each compression ratio increase. Trends with efficiency and torque are described amongst the fuels tested.
Technical Paper

The Effects of Intake Geometry on SI Engine Performance

2009-04-20
2009-01-0302
Intake tuning is a relatively simple alternative to turbochargers and superchargers as a means of augmenting engine performance. Capitalizing on air flow harmonics at specific engine speeds, intake tuning forces more air into the engine cylinders, resulting in greater torque and power. Concepts such as Helmholtz Resonance Theory and Reflective Wave Theory help to describe the physical phenomena that contribute to intake tuning, but previous studies have generally found that computer models utilizing computational fluid dynamics (CFD) are needed to accurately predict performance effects. The current research involves testing various intake runner lengths and cross section geometries on a Honda CBR600 F4i gasoline engine typically used to power a Formula SAE car. Also, the effect of adding 180 degree bends to intake runners is evaluated.
Technical Paper

Single Cylinder Diesel Engine Startup Experiments with Cycle Resolved Emissions Sampling

2009-04-20
2009-01-0614
Fast emissions analysis, soot analysis, and pressure sensing is utilized to examine the first few seconds before, and after startup in a single-cylinder CFR diesel engine. The equivalence ratio, compression ratio, and injection timing are varied. The data show that UHC and CO emissions are highest at the highest and lowest fueling conditions, while NOx emissions peaked at intermediate fueling conditions. Leaner operating conditions show delayed starting but reduced ignition delay. Oil vapor causes soot emissions prior to first combustion, and soot particle size shifts higher during the first few seconds after combustion begins. Injection timing has little effect except at the leanest equivalence ratios, where a retarded injection timing increases the delay until a successful combustion event. At lower compression ratios, large IMEP oscillations occurred during startup. The data suggest possible strategies to optimize diesel startup.
Technical Paper

An Investigation into the Onset of Knock in a CFR Engine

2006-10-16
2006-01-3344
Internal combustion engine knock has limited compression ratios of spark ignition engines for most of the history of gasoline engines. This limitation continues to exist today. While knock is generally a low engine speed, high load phenomenon, this operating condition is infrequently used by many vehicle operators, and if the engine is brought to this operating condition generally little time is spent in this knock prone condition. This study seeks to investigate the transition into knock due to throttle changes from part to full load. The experimental results using a CFR engine operating on iso-octane fuel show that knock is delayed by at least one high load engine cycle after the throttle is opened. Optimization of spark timing to account for this effect provides for the best increase of engine load without audible knock occurring.
Technical Paper

The Intensity of Knock in an Internal Combustion Engine: An Experimental and Modeling Study

1992-10-01
922327
Experimental data have been obtained that characterize knock occurrence times and knock intensities in a spark ignition engine operating on indolene and 91 primary reference fuel, as spark timing and inlet temperature were varied. Individual, in-cylinder pressure histories measured under knocking conditions were conditioned and averaged to obtain representative pressure traces. These averaged pressure histories were used as input to a reduced and detailed chemical kinetic model. The time derivative of CO concentration and temperature were correlated with the measured knock intensity and percent cycles knocking. The goal was to evaluate the potential of using homogenous, chemical kinetic models as predictive tools for knock intensity.
Technical Paper

The Effect of Valve Overlap on Idle Operation: Comparison of Model and Experiment

1993-10-01
932751
Validation of the Ford General Engine SIMulation program (GESIM) with measured firing data from a modified single cylinder Ricardo HYDRA research engine is described. GESIM predictions for peak cylinder pressure and burn duration are compared to test results at idle operating conditions over a wide range of valve overlap. The calibration of GESIM was determined using data from only one representative world-wide operating point and left unchanged for the remainder of the study. Valve overlap was varied by as much as 36° from its base setting. In most cases, agreement between model and data was within the accuracy of the measurements. A cycle simulation computer model provides the researcher with an invaluable tool for acquiring insight into the thermodynamic and fluid mechanical processes occurring in the cylinder of an internal combustion engine.
Technical Paper

A Feedgas HC Emission Model for SI Engines Including Partial Burn Effects

1993-10-01
932705
A model is presented which incorporates the key mechanisms in the formation and reduction of unburned HC emissions from spark ignited engines. The model includes the effects of piston crevice volume, oil layer absorption / desorption, partial burns, and in-cylinder and exhaust port oxidation. The mechanism for the filling and emptying of the piston crevice takes into account the location of the flame front so that the flow of both burned gas and unburned gas is recognized. Oxidation of unburned fuel is calculated with a global, Arrhenius-type equation. A newly developed submodel is included which calculates the amount of unburned fuel to be added to the cylinder as a result of partial burns. At each crankangle, the submodel compares the rate of change of the burned gas volume to the rate of change of the cylinder volume.
Technical Paper

Powertrain Development of the 1996 Ford Flexible Fuel Taurus

1995-12-01
952751
Two flexible fuel vehicles (FFVs) using dielectric alcohol sensors have been designed and developed for mass production. One FFV will operate on gasoline or methanol up to 85% (M85). The second FFV will operate on gasoline or ethanol up to 85% (E85). Significant modification of a conventional dedicated gasoline engine was necessary in order to avoid major problems in the areas of preignition, engine wear and material compatibility. Operation on alcohol fuels provides for improved torque and horsepower over gasoline. Feedgas emission levels with alcohol fuels are lower than those with gasoline. However, this advantage is diminished at the tailpipe due to the long catalytic converter light-off times that result from the lower combustion temperatures which characterize alcohol fuels. Meeting evaporative emission regulations provided a challenge due to the high levels of vapor generated by low alcohol percentage fuel blends.
Technical Paper

High-speed Video Observation of Engine Oil Aeration

2004-10-25
2004-01-2913
The oil aeration process in the crankcase of a V6 engine was visualized with a high-speed video camera and a borescope at engine speeds up to 4500rpm and oil temperatures to 70°C. The video images showed that a high-speed oil droplet stream was flung from the crankshaft counterweight, passed through the oil drainage gap in the windage tray and struck the free surface of the oil in the sump. There was a speed threshold beyond which foam was observed to form on the oil surface. When the engine speed was reduced to below that threshold, the foam disappeared. When the windage tray was removed, there was no foam formation. The results suggested that foam formation was the net result of the balance between the air bubble formation and destruction processes. These two processes were speed dependent.
Technical Paper

Predictions of In-Cylinder Swirl Velocity and Turbulence Intensity for an Open Chamber Cup in Piston Engine

1981-02-01
810224
A flow model is presented that predicts the swirl and turbulent velocities in an open chamber, cup-in-piston I.C. engine. The swirl model is based on an integral formulation of the angular momentum equation solved with an assumed tangential velocity profile form, Vθ(r). This enables the swirl model to predict a non-solid body rotation which is a function of the inlet flow, wall shear and squish motion during the engine cycle. The mean flow model is coupled with a global K-ε model which together predict shear stresses, mixing rates and heat transfer coefficients. An integrated form of the K-ε turbulence model is used which includes the compressibility, shear and boundary layer effects. Turbulence generated by the inlet flow is included and assumed to be proportional to the velocity past the intake valve. Also, the production of turbulence due to the boundary layer effects are included.
Technical Paper

Analysis of the Flow and Combustion Processes of a Three-Valve Stratified Charge Engine with a Small Prechamber

1974-02-01
741170
The flow and combustion processes of a three-valve, stratified charge engine with small prechamber are examined for exhaust emissions. The exhaust emissions from a single-cylinder version of this engine are shown to depend on the internal flow processes as well as mixture supply stoichiometry. A theoretically-based simulation model of the engine flow and combustion processes is described. Model predictions are compared with time-resolved prechamber air-fuel ratio measurements made during intake and compression strokes. These comparisons are used to illustrate and describe the complex flow phenomena which take place in this engine. The combustion process is then examined with the aid of calculations using the simulation model. The complexity of the combustion process is illustrated by showing that, in addition to burned gas temperatures, the cylinder and prechamber burned gas air-fuel ratios change with time.
Technical Paper

Comparison of Model Calculations and Experimental Measurements of the Bulk Cylinder Flow Processes in a Motored PROCO Engine

1979-02-01
790290
A PROCO Flow Simulation (PFSIM) model has been developed to calculate the angular velocity (swirl) and radial velocity (squish) as a function of crank angle for the four strokes of the motored engine cycle. In addition, the PFSIM model calculates the time dependent cylinder pressure, temperature and mass. The model accepts the following swirl-related parameters as input: dimensionless angular momentum and mass flow coefficients for a specific intake and exhaust system configuration. These parameters determine the intake-generated swirl which is computed from the angular momentum flux entering the cylinder during the induction process. An angular momentum flux swirl meter was used to obtain the required input data for three different intake port configurations, and calculations of the bulk cylinder flow were carried out with PFSIM for each intake port configuration.
Technical Paper

The Effect of In-Cylinder Flow Processes (Swirl, Squish and Turbulence Intensity) on Engine Efficiency — Model Predictions

1982-02-01
820045
A computer simulation for the performance of a four-stroke spark-ignition engine is used to assess the effects of in-cylinder flow processes on engine efficiency. The engine simulation model is a thermodynamic model coupled to submodels for the various physical processes of in-cylinder swirl, squish and turbulent velocities, heat transfer and flame propagation. The swirl and turbulence models are based on an integral formulation of the angular momentum equation and a K-ε turbulence model, These models account for the effects of changes in geometry of the intake system and the chamber design on in-cylinder flow processes. The combustion model is an entrainment burn-up model applicable to the mixing controlled region of turbulent flame propagation. The flame is assumed to propagate spherically from one or two spark plug locations. A heat transfer model that is dependent upon the turbulence level is used to compute the heat loss from the unburned and burned gases.
Technical Paper

The Effects of Load Control with Port Throttling at Idle- Measurements and Analyses

1989-02-01
890679
An experimental and analytical study was conducted to investigate the effects of load control with port throttling on stability and fuel consumption at idle. With port throttling, the pressure in the intake port increases during the valve-closed period due to flow past the throttle. If the pressure in the port recovers to ambient before the valve overlap period, back flow into the intake system from the cylinder is eliminated. This allows increased valve overlap to be used without increasing the residual mass fraction in the cylinder. Results showed that, with high valve overlap and port throttling, idle stability and fuel consumption can be maintained at values associated with low overlap in a conventionally throttled engine. However, implementation of this concept in production is regarded to require precision-fit and balanced port throttles, an external vacuum pump for vacuum systems support, and revision of the PCV system.
Technical Paper

Reduction of Exhaust Emission from a Stoichiometric Engine Using Non-Thermal Plasma Generated by a Corona Discharge Device

1999-10-25
1999-01-3636
A corona discharge device (CDD) used in conjunction with automotive stoichiometric catalysts has been shown to be effective in reducing exhaust tailpipe emissions and catalytic converter light-off temperatures. The CDD used here is a low power, low cost corona discharge device mounted ahead of the catalytic converter in the exhaust stream. Creation of radicals and other oxidizing species in the exhaust by the non-thermal plasma is shown to significantly improve catalyst conversion efficiencies for HC, CO and NOx. Burner flow data shows improvement in steady-state conversion efficiencies as well as improved catalyst light-off performance. Engine-dynamometer and vehicle data on spark ignition engines using production type (stoichiometric) control also shows improved performance with aged catalysts, and various levels of fuel sulfur. The reversibility of sulfur poisoning was also observed.
X