Refine Your Search

Topic

Search Results

Journal Article

Simulation of Mild Surge in a Turbocharger Compression System

2010-10-25
2010-01-2142
The behavior of the compression system in turbochargers is studied with a one-dimensional engine simulation code. The system consists of an upstream compressor duct open to ambient, a centrifugal compressor, a downstream compressor duct, a plenum, and a throttle valve exhausting to ambient. The compression system is designed such that surge is the low mass flow rate instability mode, as opposed to stall. The compressor performance is represented through an extrapolated steady-state map. Instead of incorporating a turbine into the model, a drive torque is applied to the turbocharger shaft for simplification. Unsteady compression system mild surge physics is then examined computationally by reducing the throttle valve diameter from a stable operating point. Such an increasing resistance decreases the mass flow rate through the compression system and promotes surge.
Journal Article

Instabilities at the Low-Flow Range of a Turbocharger Compressor

2013-05-13
2013-01-1886
The acoustic and performance characteristics of an automotive centrifugal compressor are studied on a steady-flow turbocharger test bench, with the goal of advancing the current understanding of compression system instabilities at the low-flow range. Two different ducting configurations were utilized downstream of the compressor, one with a well-defined plenum (large volume) and the other with minimized (small) volume of compressed air. The present study measured time-resolved oscillations of in-duct and external pressure, along with rotational speed. An orifice flow meter was incorporated to obtain time-averaged mass flow rate. In addition, fast-response thermocouples captured temperature fluctuations in the compressor inlet and exit ducts along with a location near the inducer tips.
Journal Article

Exhaust Manifold Durability Subject to Splash Quenching

2015-04-14
2015-01-1735
Exhaust manifold design is one of the more challenging tasks for the engine engineer due to the harsh thermal and severe vibration environment. Extremely high exhaust gas temperatures and dynamic loading combine to subject the manifold to high cyclic stress when the material has reduced fatigue strength due to the high temperature. A long service life before a fatigue failure is the objective in exhaust manifold design. Accumulation of fatigue damage can occur from dynamic loading and thermal loading combined. Thermal mechanical fatigue (TMF) is a primary mechanism for accumulating fatigue damage. TMF typically occurs when a vehicle driving cycle has operating conditions that repeatedly change the exhaust gas temperature between hot and cold. Another way to experience temperature cycling is through splash quenching. Splash quenching was analyzed and found to rapidly accumulate fatigue damage.
Journal Article

Influence of Pre Turbo Catalyst Design on Diesel Engine Performance, Emissions and Fuel Economy

2008-04-14
2008-01-0071
This paper gives a thorough review of the HC/CO emissions challenge and discusses the effects of different diesel oxidation catalyst designs in a pre turbine and post turbine position on steady state and transient turbo charger performance as well as on HC and CO tailpipe emissions, fuel economy and performance of modern Diesel engines. Results from engine dynamometer testing are presented. Both classical diffusive and advanced premixed Diesel combustion modes are investigated to understand the various effects of possible future engine calibration strategies.
Journal Article

Prediction of Surge in a Turbocharger Compression System vs. Measurements

2011-05-17
2011-01-1527
The unsteady surge behavior of a turbocharger compression system is studied computationally by employing a one-dimensional engine simulation code. The system modeled represents a new turbocharger test stand consisting of a compressor inlet duct breathing from ambient, a centrifugal compressor, an exit duct connected to an adjustable-volume plenum, followed by another duct which incorporates a control valve and an orifice flow meter before exhausting to ambient. Characteristics of mild and deep surge are captured as the mass flow rate is reduced below the stability limit, including discrete sound peaks at low frequencies along with their amplitudes in the compressor (downstream) duct and plenum. The predictions are then compared with the experimental results obtained from the cold stand placed in a hemi-anechoic room.
Journal Article

Variable Intake Cam Duration Technologies for Improved Fuel Economy

2012-09-10
2012-01-1641
Using a 3 liter, 4 valves per cylinder, V6 Diesel engine model, this study investigates late intake valve closing (LIVC) time in an effort to reduce the fuel consumption of the engine. Two different intake cam duration technologies for diesel engines are evaluated using a 1-D engine simulation software code. The first method utilized for duration control delays the effective closing of the intake valve by moving one intake cam lobe with respect to the other baseline intake cam lobe. In the second method, the closing of both intake valves is delayed by the introduction of an adjustable dwell period during the closing portion of the valve motion. During this mid-lift dwell period, the lift is held at a constant value until it goes into the closing phase. The systems are evaluated and compared at 4 operating points of varying engine speed and load. At each operating point, while engine load is held constant, intake valve closing time is varied.
Technical Paper

Analysis of Diesel Engine Emissions Reduction by Late Intake Valve Close and VTG Turbocharger Using 1-D Simulation

2008-10-06
2008-01-2444
A 1-D GT-Power model based investigation has been carried out to identify the impact of late intake valve closing (LIVC) on fuel economy and emission reduction of a modern small bore diesel engine. The diesel engine examined employed a variable turbine geometry (VTG) turbocharger with air-to-air charge cooler, cooled low pressure exhaust gas re-circulation (LP-EGR), and cooled high pressure exhaust gas re-circulation (HP-EGR). The LIVC system investigated varied the closing time of the intake valve by increasing or decreasing the dwell at the maximum valve lift point. This paper describes how the fuel economy and NOx emission of the diesel engine were affected by varying the intake valve closing time. The intake valve closing time was delayed by as much as 60 degrees.
Technical Paper

Coupled Thermal-Engine Simulation for a Light Duty Application

2010-04-12
2010-01-0806
The thermal management of vehicles has increased in importance due to the significant role of friction and auxiliary losses in engine operation on CO2 emissions. To evaluate different system and component concepts regarding their influence on fuel consumption, simulation offers a wide range of opportunities. In this paper a fully integrated model is presented utilizing the GT-Suite commercial code. It contains a diesel engine system model, a cooling circuit including a simplified model for the cooler package in the vehicle front end and a vehicle model. The purpose of this model is the investigation of cooling system components and control strategies with different engine inputs. A significant run time advantage is achieved by using a mean value engine model, which has a reduced number of input parameters. The simulation using the integrated model can be carried out within an acceptable time frame which enables vehicle drive cycle analysis.
Technical Paper

Valve-Event Modulated Boost System

2010-04-12
2010-01-1222
Prior work with the concept of dividing the exhaust process into an early and late phase has shown the potential of applying only the early stage (blow-down) of the exhaust period directly to a turbocharger or turbocharger system, and the later stage (scavenge) arranged to bypass the turbine. In this manner, the exhaust backpressure required to extract high turbine work from the engine can be isolated from the displacement phase of the exhaust stroke and thereby greatly reduce the exhaust pumping work and Residual Gas Fraction. In previously-published efforts, the challenges of valve-event control and high turbine inlet temperature have been revealed. The BorgWarner Engine Systems Group, in conjunction with Presta, has applied a cam-phaser controlled concentric camshaft system to the exhaust side of a divided exhaust port 4-valve per cylinder DOHC GDI engine, to enable variable phasing between the Blow-down and Scavenge cam profiles.
Technical Paper

Requirements of External EGR Systems for Dual Cam Phaser Turbo GDI Engines

2010-04-12
2010-01-0588
It has been clearly demonstrated separately, that the application of both Dual Cam Phasers (DCP) and External Cooled EGR systems are highly beneficial to improving the efficiency of highly-boosted GDI engines. DCP systems can optimize the volumetric efficiency at WOT conditions, improve boost and transient response at low engine speeds, and provide internal EGR at low RPM part-load conditions. External cooled EGR has been demonstrated to dramatically improve the fuel consumption, lower turbine inlet temperature, and improve emissions at high power conditions. In previous investigations by the BorgWarner Engine Systems Group, we showed that full engine speed/load range EGR coverage can be obtained by combining High Pressure Loop and Low Pressure Loop external EGR systems with a DCP strategy.
Technical Paper

Turbocharger Matching for a 4-Cylinder Gasoline HCCI Engine Using a 1D Engine Simulation

2010-10-25
2010-01-2143
Naturally aspirated HCCI operation is typically limited to medium load operation (∼ 5 bar net IMEP) by excessive pressure rise rate. Boosting can provide the means to extend the HCCI range to higher loads. Recently, it has been shown that HCCI can achieve loads of up to 16.3 bar of gross IMEP by boosting the intake pressure to more than 3 bar, using externally driven compressors. However, investigating HCCI performance over the entire speed-load range with real turbocharger systems still remains an open topic for research. A 1 - D simulation of a 4 - cylinder 2.0 liter engine model operated in HCCI mode was used to match it with off-the-shelf turbocharger systems. The engine and turbocharger system was simulated to identify maximum load limits over a range of engine speeds. Low exhaust enthalpy due to the low temperatures that are characteristic of HCCI combustion caused increased back-pressure and high pumping losses and demanded the use of a small and more efficient turbocharger.
Technical Paper

A Variable Displacement Supercharger Performance Evaluation

2017-03-28
2017-01-0640
The Variable Displacement Supercharger (VDS) is a twin helical screw style compressor that has a feature to change its displacement and its compression ratio actively during vehicle operation. This device can reduce the parasitic losses associated with supercharging and improve the relative fuel economy of a supercharged engine. Supercharging is a boosting choice with several advantages over turbocharging. There is fast pressure delivery to the engine intake manifold for fast engine torque response providing the fun to drive feel. The performance delivered by a supercharger can enable engine fuel economy actions to include engine downsizing and downspeeding. The cost and difficulty of engineering hot exhaust components is eliminated when using only an air side compressor. Faster catalyst warm up can be achieved when not warming the turbine housing of a turbocharger.
Technical Paper

Effectiveness of Swirl-Vanes Upstream of Casing-Treatment at the Compressor Inlet in Automotive Turbochargers

2016-04-05
2016-01-1022
The use of Swirl-Vanes or Inlet Guide Vanes (IGV) in gas engines is well-known and has demonstrated their ability to improve compressor surge margin at low flow rates. But, the use of swirl-vanes is not too common in large diesel engine turbo-chargers where compressor housing inlet has some form of Casing-Treatment (CT). Recently, Ford engineers tested swirl-vanes in a diesel engine turbocharger where the compressor inlet had a ported shroud casing-treatment and the experimental data showed no improvement in surge margin. Computational Fluid Dynamics (CFD) analyses were performed to investigate reasons why the surge margin did not improve after introducing swirl-vanes at the compressor inlet. The CFD results showed strong interactions between swirling flow at the compressor inlet and flow stream coming out of the compressor inlet casing-treatment.
Technical Paper

Development of an Experimental Facility to Characterize Performance, Surge, and Acoustics in Turbochargers

2011-05-17
2011-01-1644
A cold turbocharger test facility was designed and developed at The Ohio State University to measure the performance characteristics under steady state operating conditions, investigate unsteady surge, and acquire acoustic data. A specific turbocharger is used for a thermodynamic analysis to determine the capabilities and limitations of the facility, as well as for the design and construction of the screw compressor, flow control, oil, and compression systems. Two different compression system geometries were incorporated. One system allows compressor performance measurements left of the surge line, while the other incorporates a variable-volume plenum. At the full plenum volume and a specific impeller tip speed, the temporal variation of the compressor inlet and outlet and the plenum pressures as well as the turbocharger speed is presented for stable, mild surge, and deep surge operating points.
Technical Paper

Loss Analysis of a HD-PPC Engine with Two-Stage Turbocharging Operating in the European Stationary Cycle

2013-10-14
2013-01-2700
Partially Premixed Combustion (PPC) has demonstrated substantially higher efficiency compared to conventional diesel combustion (CDC) and gasoline engines (SI). By combining experiments and modeling the presented work investigates the underlying reasons for the improved efficiency, and quantifies the loss terms. The results indicate that it is possible to operate a HD-PPC engine with a production two-stage boost system over the European Stationary Cycle while likely meeting Euro VI and US10 emissions with a peak brake efficiency above 48%. A majority of the ESC can be operated with brake efficiency above 44%. The loss analysis reveals that low in-cylinder heat transfer losses are the most important reason for the high efficiencies of PPC. In-cylinder heat losses are basically halved in PPC compared to CDC, as a consequence of substantially reduced combustion temperature gradients, especially close to the combustion chamber walls.
Technical Paper

An Experimental Study of In-Cylinder Air Flow in a 3.5L Four-Valve SI Engine by High Speed Flow Visualization and Two-Component LDV Measurement

1993-03-01
930478
In-cylinder flows in four-valve SI engines were examined by high frame rate flow visualization and two-component LDV measurement. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence later in the cycle. The exact nature of this relationship is not well known. However, control of the turbulence offers control of the combustion process. To develop a better physical understanding of the in-cylinder flow, the effects of the cylinder head intake port configuration and the piston geometry were examined. For the present study, a 3.5L, four-valve engine was modified to be mounted on an AVL single cylinder research engine type 520. A quartz cylinder was fabricated for optical access to the in-cylinder flow. Piston rings were replaced by Rulon-LD rings. A Rulon-LD ring is advantageous for the optical access as it requires no lubrication.
Technical Paper

3-D LDV Measurement of In-Cylinder Air Flow in a 3.5L Four-Valve SI Engine

1995-02-01
950648
In-cylinder flows in a motored four-valve SI engine were examined by simultaneous three-component LDV measurement. The purpose of this study was to develop better physical understanding of in-cylinder flows and quantitative methods which correlate in-cylinder flows to engine performance. This study is believed to be the first simultaneous three-component LDV measurement of the air flow over a planar section of a four-valve piston-cylinder assembly. Special attention is paid to the tumble formation process, three-dimensional turbulent kinetic energy, and measurement of the tumble ratio. The influence of the induction system and the piston geometry are believed to have a significant effect on the in-cylinder flow characteristics. Using LDV measurement, the flows in two different piston top geometries were examined. One axial plane was selected to observe the effect of piston top geometries on the flow field in the combustion chamber.
Technical Paper

An Evaluation of Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve 3.5L SI Engine Using 3-D LDV Measurements

1997-02-24
970793
A better understanding of turbulent kinetic energy is important for improvement of fuel-air mixing, which can lead to lower emissions and reduced fuel consumption. An in-cylinder flow study was conducted using 1548 Laser Doppler Velocimetry (LDV) measurements inside one cylinder of a 3.5L four-valve engine. The measurement method, which simultaneously collects three-dimensional velocity data through a quartz cylinder, allowed a volumetric evaluation of turbulent kinetic energy (TKE) inside an automotive engine. The results were animated on a UNIX workstation, using a 3D wireframe model. The data visualization software allowed the computation of TKE isosurfaces, and identified regions of higher turbulence within the cylinder. The mean velocity fields created complex flow patterns with symmetries about the center plane between the two intake valves. High levels of TKE were found in regions of high shear flow, attributed to the collisions of intake flows.
Technical Paper

Tumble and Swirl Quantification within a Motored Four-Valve SI Engine Cylinder Based on 3-D LDV Measurements

1997-02-24
970792
The flow field contained within ten planes inside a cylinder of a 3.5 liter, 24-valve, V-6 engine was mapped using a three-dimensional Laser Doppler Velocimetry (3-D LDV) system. A total of 1,548 LDV measurement locations were used to construct the time history of the in-cylinder flow fields during the intake and compression strokes. The measurements began during the intake stroke at a crank angle of 60° ATDC and continued until approximately 280° ATDC. The ensemble averaged LDV measurements allowed for a quantitative analysis of the dynamic in-cylinder flow process in terms of tumble and swirl motions. Both of these quantities were calculated at every 1.8 crank degrees during the described measurement interval. Tumble calculations were performed about axes in multiple planes in both the Cartesian directions perpendicular to the plane of the piston top. Swirl calculations were also accomplished in multiple planes that lie parallel to the plane of the piston top.
Technical Paper

Surge Prediction in a Single Sequential Turbocharger (SST) Compressor Using Computational Fluid Dynamics

2019-06-05
2019-01-1490
The Single Sequential Turbocharger (SST) used in Ford’s 6.7L Scorpion Diesel is analyzed using Computational Fluid Dynamics (CFD) to draw conclusions about the compressor stability at low mass flows. The SST compressor concept consists of a double-sided wheel which flows in parallel fed by two separate inlets (front and rear), followed by a single vane-less diffuser, and a volute. CFD simulations for the full stage are performed at low mass flow rates Both, front and rear, sides have ported shroud casing-treatment (CT) in the inlet region. An objective of the analysis is to determine which side of the SST unit compressor (front or rear on the double-sided wheel) suffers flow break down first as the mass flow is reduced, and its impact on the overall stability of the SST compressor. Another objective is to better understand the interactions between the compressor inlet flow and the flow through the casing-treatment.
X