Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Closed-Loop Combustion Control of a HCCI Engine with Re-Breathing EGR System

2013-10-15
2013-32-9069
This study experimentally investigates the control system and the algorithm after constructing a HCCI combustion control system for the development of a small HCCI engine fuelled with Dimethyl Ether (DME). This system can control four throttles for the mixing ratio of three gases of in-cylinder (stoichiometric pre-mixture, hot EGR gas and cold EGR gas). At first, the combustion behavior for combustion phasing retarded operation with cold and hot EGR was examined. Then, the potential of model-based and feed back control for HCCI combustion with change of the demand of IMEP was investigated. In the end, the limit of combustion-phasing retard for IMEP and PRR was explored. Results shows that to get high IMEP with acceptable PRR and low coefficient of variation of IMEP, crank angle of 50% heat release (CA50) should be controlled at constant phasing in the expansion stroke. CA50 can be controlled by changing the ratio of pre-mixture, hot EGR gas and cold EGR gas with throttles.
Journal Article

A Potentiality of Dedicated EGR in SI Engines Fueled by Natural Gas for Improving Thermal Efficiency and Reducing NOx Emission

2014-11-11
2014-32-0108
Recently, a potentiality of Dedicated EGR (D-EGR) concept SI engine has been studied. This concept engine had four cylinders and operated with exhaust gas supplied from the single cylinder to the intake manifold. Compared with conventional SI engines, it was able to increase thermal efficiency and decrease CO, HC, and NOx emission by the high D-EGR ratio 0.25. In this study, numerical analysis of a SI engine with D-EGR system with various D-EGR ratios was conducted for detailed understanding the potentiality of this concept in terms of thermal efficiency and NOx emission. #1 cylinder of assumed engine was used as D-EGR cylinder that equivalence ratio varied from 0.6 to 3.4. Entire exhaust gas from #1 cylinder was recirculated to the other cylinders. The other cylinders run with this exhaust gas and new premixed air and fuel with various equivalence ratios from 0.6-1.0.
Journal Article

A Computational Study of the Combined Effects of EGR and Boost Pressure on HCCI Autoignition

2012-10-23
2012-32-0076
This study computationally investigates the combined effects of EGR and boost pressure on HCCI autoignition using iso-octane, PRF50 and n-heptane. The computations were conducted using the single-zone model of CHEMKIN included in CHEMKIN-PRO with detailed chemical-kinetics mechanisms for iso-octane, PRF and n-heptane from Lawrence Livermore National Laboratory (LLNL). To better reproduce the state of EGR addition in real engine, the EGR composition is determined after several combustion cycles under the constant amount of fuel. All data points were acquired with a CA50 of 5°CA aTDC by adjusting initial temperature to remove the effect of combustion phasing, which can influence on HCCI autoignition from any effect of the EGR and boost pressure themselves. The results show that EGR increases the burn duration and reduces the maximum pressure-rise rate with lower peak of maximum heat-release rates for all fuels even for a boost pressure, which accelerates a HCCI autoignition propensity.
Technical Paper

Stratification of Swirl Intensity in the Axial Direction for Control of Turbulence Generation During the Compression Stroke

1991-02-01
910261
Control of turbulence during the compression stroke is suggested by both theoretical calculations and experimental results obtained with an LDV measurement in a motored engine. The authors have found experimentally that when an axial distribution of swirl intensity exists, a large-scale annular vortex is formed inside the cylinder during the compression stroke and this vortex generates and transports turbulence energy. A numerical calculation is adopted to elucidate this phenomenon. Then, an axial stratification of swirl intensity is found to generate a large-scale annular vortex during the compression stroke by an interaction between the piston motion and the axial pressure gradient. The initial swirl profile is parametrically varied to assess its effect on the turbulence parameters. Among calculated results, turbulence energy is enhanced strongest when the swirl intensity is highest at the piston top surface and lowest at the bottom surface of the cylinder head.
Technical Paper

High Temperature Diesel Combustion in a Rapid Compression-Expansion Machine

1991-09-01
911845
According to previous papers on the combustion process in LHR diesel engines the combustion seems to deteriorate in LHR diesel engines. However it has been unclear whether this was caused by the high temperature gas or high temperature combustion chamber walls. This study was intended to investigate the effect of gas temperature on the rate of heat release through the heat release analysis and other measurements using a rapid compression-expansion machine. Experiments conducted at high gas temperatures which was achieved by the employment of oxygen-argon-helium mixture made it clear that the combustion at a high gas temperature condition deteriorated actually and this was probably due to the poorer mixing rate because of the increase in gas viscosity at a high gas temperature condition.
Journal Article

A Computational Study of the Effects of EGR and Intake-Pressure Boost on DME Autoignition Characteristics over Wide Ranges of Engine Speed

2014-04-01
2014-01-1461
This study has been computationally investigated how the DME autoignition reactivity is affected by EGR and intake-pressure boost over various engine speed. CHEMKIN-PRO was used as a solver and chemical-kinetics mechanism for DME was utilized from Curran's model. We examined first the influence of EGR addition on autoignition reactivity using contribution matrix. Investigations concentrate on the HCCI combustion of DME at wide ranges of engine speeds and intake-pressure boost with EGR rates and their effects on variations of autoignition timings, combustion durations in two-stage combustion process in-detail including reaction rates of dominant reactions involved in autoignition process. The results show that EGR addition increases the combustion duration by lowering reaction rates.
Technical Paper

An Investigation of Combustion Control Using EGR for Small and Light HCCI Engine Fuelled with DME

2007-07-23
2007-01-1876
The HCCI engine could offer low NOx, PM emissions and high efficiency. However the operation region of the HCCI combustion is limited because of the knocking at high load and the misfire at low load. Moreover the HCCI principle lacks direct combustion control and needs a system to control the combustion phasing with high accuracy. Today there exists various ways to control the HCCI combustion, such as Variable Valve Train, Variable Compression Ratio, Inlet Air Heating and Dual Fuels. However such variable mechanisms and Inlet Air Heating tend to be heavy and complex. Dual Fuels method needs two types of fuels and has a challenge in infrastructure. In this study, in order to develop a small and light HCCI engine, a simple HCCI combustion control system is proposed. DME (Di-methyl Ether) is used as the fuel to keep the structure small and light. In this system, the mixing ratio of three gases: stoichiometric pre-mixture, hot EGR gas and cold EGR gas is changed by only throttles.
Technical Paper

An Investigation of the Effect of Thermal Stratification on HCCI Combustion by using Rapid Compression Machine

2007-07-23
2007-01-1870
A significant drawback to HCCI engines is the knocking caused by rapid increases in pressure. Such knocking limits the capacity for high-load operation. To solve this problem, thermal stratification in the combustion chamber has been suggested as possible solution. Thermal stratification has the potential to reduce the maximum value of the rate of pressure increase combustion by affecting the local combustion start time and extending the duration of combustion. The purpose of this study was to experimentally obtain fundamental knowledge about the effect of thermal stratification on the HCCI combustion process. Experiments were conducted in a rapid compression machine (RCM) equipped with a quartz window to provide optical access to the combustion chamber. The machine was fueled with DME, n-Butane, n-Heptane and iso-Octane, all of which are currently being investigated as alternative fuels and have different low temperature characteristics.
Technical Paper

Comprehensive Characterization of Particulate Emissions from Advanced Diesel Combustion

2007-07-23
2007-01-1945
The applicability of several popular diesel particulate matter (PM) measurement techniques to low temperature combustion is examined. The instruments' performance in measuring low levels of PM from advanced diesel combustion is evaluated. Preliminary emissions optimization of a high-speed light-duty diesel engine was performed for two conventional and two advanced low temperature combustion engine cases. A low PM (<0.2 g/kg_fuel) and NOx (<0.07 g/kg_fuel) advanced low temperature combustion (LTC) condition with high levels of exhaust gas recirculation (EGR) and early injection timing was chosen as a baseline. The three other cases were selected by varying engine load, injection timing, injection pressure, and EGR mass fraction. All engine conditions were run with ultra-low sulfur diesel fuel. An extensive characterization of PM from these engine operating conditions is presented.
Technical Paper

Experimental Study of Transient Gas Jet Impinging on a Wall

1990-02-01
900479
The process of forming mixtures of injected fuels and ambient air has significant effects on the ignition and combustion process in the direct injection engine. In these engines fuel is injected intermittently and fuel jet impinges on a combustion chamber wall. This study deals with a fundamental experiment on the mixing process of the transient gas jet together with the instantaneous concentration measurement and statistical analysis of the transient turbulent mixing process in the jet. Helium or carbon dioxide is injected at constant pressure into quiescent atmosphere through the single shot device. This paper presents a laboratory automation system for measuring the characteristics of transient gas jet and processing the data. A discussion on the process of mixture formation of transient gas jets impinging on a wall is carried out with time- and space- resolved concentration distribution.
Technical Paper

A Study on Combustion Control by Using Internal and External EGR for HCCI Engines Fuelled with DME

2006-11-13
2006-32-0045
The Homogeneous Charge Compression Ignition (HCCI) engine is possible to achieve high thermal efficiency and low emissions. One of the main challenges with HCCI engines is structuring the systems to control combustion phasing, crank angle of 50% heat release (CA50), for keeping high thermal efficiency and avoiding an excessive rate of pressure rise which causes knocking, when operating conditions vary. Though some HCCI combustion control systems, for example Variable Valve Timing System and Variable Compression Ratio System, have been suggested, these control systems are complex and heavy. In this study, for the development of a lightweight and small-sized generator HCCI engine fuelled with Dimethyl Ether (DME) which is low-emission and easy to autoignite, a simple HCCI combustion control system is suggested, and the control system is evaluated experimentally.
Technical Paper

Effect of Degree of Unmixedness on HCCI Combustion Based on Experiment and Numerical Analysis

2006-11-13
2006-32-0046
The purpose of this study was to gain a better understanding of the effects of in-cylinder gas temperature stratification on reducing the pressure-rise rate in HCCI combustion. HCCI combustion was investigated using an optically accessible engine and direct visualization of the combustion chemiluminescence. The engine was fueled with Di-Methyl Ether. Computational work was conducted on the gas compression and expansion strokes in HCCI engine with simple 0-dimensinal multi-zones model. When fuel inhomogeneous charging in experiment, maximum heat release rate decreased. Combustion duration got longer. Maximum pressure-rise rate decreased. Chemiluminescence, of which transition was identified from the side of intake valve to the side of exhaust valve, was observed. It is need for total moderate heat release to get local moderate combustion with not overall but continuous combustion in chamber.
Technical Paper

Mechanism of Road Side NOx Pollution Exhausted by On-Road Driving Diesel Vehicle - Comparison between Vehicle Adopted for New Long Term Regulation and Vehicle Adopted for Long Term Regulation Using On-board Measurement System

2010-10-25
2010-01-2277
Nitrogen oxides, collectively called NOx, from diesel vehicles are considered to be accumulated by particular area of roadsides, so-called "Hot-spot," and result in harmful influence to pedestrians and residents by roadsides. Japanese regulations over emissions of diesel vehicles have been tightened year by year and adopting regulations, emissions in mode test on chassis dynamometer or engine dynamometer have reduced. In this research, it was investigated the effect of introduce of transient mode test, Japanese JE05 mode, to NOx emission in real world and to roadside NOx pollution by road test using on-board measurement system. As test vehicles, 2 ton diesel vehicle which is adopted for Long Term Regulation (steady-state mode test, Diesel 31 mode test, 1998) and 3 ton diesel vehicle adopted for New Long Term Regulation (transient mode test, Japanese JE05 mode, 2005) with on-board measurement system was used.
Technical Paper

An Investigation of the Effects of Fuel Inhomogeneity on the Pressure Rise Rate in HCCI engine using Chemiluminescence Imaging

2010-09-28
2010-32-0097
Theoretically, homogeneous charge compression engines (HCCI) are able to grant a high thermal efficiency, as well as a low NOx and particulate emissions. This ability is mainly due to the combustion process, which, contrary to both Diesel and Gasoline engine, is homogeneous in time and space within the combustion chamber. But despite these advantages, the engine operating condition is limited by the narrow boundaries of misfire at low load and knocking at high load. For that matter, one of the numerous ways of overcoming knocking is to deliberately create fuel inhomogeneities within the combustion chamber, since it has proved to lengthen combustion duration and to drastically reduce maximum pressure rise rate (PRR). Nevertheless, though the global effects of fuel inhomogeneities on PRR have been studied, we lack information that explains this phenomenon.
Technical Paper

Measurement of the Rate of Multiple Fuel Injection with Diesel Fuel and DME

2001-03-05
2001-01-0527
The accuracy of the injection rate meter based on W. Zeuch's method in the measurement of multiple injection rate and amount was calibrated using a small cam driven piston that is driven by an electric motor. For the pre- or early-injection, a sensor with a high sensitivity can be applied to measure the small pressure increase due to the small injection amount. In case of the multiple injection that has the post and/or late injection, a pressure sensor with a low sensitivity must cover not only the large pressure increase due to the main injection but also the small pressure increase due to the post and/or late injection because the output of the high sensitivity sensor is saturated after the main injection. So the linearity of the low sensitivity pressure sensor was calibrated with the cam driven piston prior to the experiment with the actual injection system.
Technical Paper

Effects of Aromatics Content and 90% Distillation Temperature of Diesel Fuels on Flame Temperature and Soot Formation

2001-05-07
2001-01-1940
In this study, the effects of fuel properties, aromatics content and 90% distillation temperature T90, on flame temperature and soot formation were studied using a rapid compression machine (RCM). Aromatics content and T90 distillation temperature were parameters isolated from influence of each other, and from cetane number. A fuel spray was injected in the RCM combustion chamber by a single nozzle hole. The ignition and combustion processes of diesel spray were observed by a high-speed direct photography. Flame temperature and KL factor (which indicates the soot concentration), were analyzed by the two-color method. The rate of heat release was analyzed from indicated diagrams. The fuels with aromatics content showed higher flame temperature. The fuel with highest T90 distillation temperature showed highest flame temperature.
Technical Paper

Effect of Nozzle Diameter and EGR Ratio on the Flame Temperature and Soot Formation for Various Fuels

2001-05-07
2001-01-1939
In this study, effects of nozzle hole diameter and EGR ratio on flame temperature (indication of NO formation) and KL value (indication of soot formation) were investigated. Combustion of a single diesel fuel spray in the cylinder of a rapid compression machine (RCM) was analyzed. Three nozzles with different hole diameter were used corresponding to present, near term and long term heavy duty diesel engine specifications. EGR was simulated through 2%vol. CO2 addition to the inlet air and by increase of in-cylinder surrounding gas temperature. Various types of fuels were used in this. The ignition and combustion processes of diesel fuel spray were observed by a high-speed direct photography and by indicated pressure diagrams. Flame temperature and KL factor were analyzed by a two-color method. With larger nozzle hole diameters there are larger high temperature areas. With smaller nozzle hole diameters there is more soot formed. Introduction of 2% vol.
Technical Paper

Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement

2004-06-08
2004-01-1902
In the HCCI Engine, inhomogeneity in fuel distribution and temperature in the pre-mixture exists microscopically, and has the possibility of affecting the ignition and combustion process. In this study, the effect of charge inhomogeneity in fuel distribution on the HCCI combustion process was investigated. Two-dimensional images of the chemiluminescence were captured by using a framing camera with an optically accessible engine in order to understand the spatial distribution of the combustion. DME was used as a test fuel. By changing a device for mixing air and fuel in the intake manifold, inhomogeneity in fuel distribution in the pre-mixture was varied. The result shows that luminescence is observed in a very short time in a large part of the combustion chamber under the homogeneous condition, while luminescence appears locally with considerable time differences under the inhomogeneous condition.
Technical Paper

Experimental Study on HCCI Combustion Characteristics of n-Heptane and iso-Octane Fuel/Air Mixture by the use of a Rapid Compression Machine

2004-06-08
2004-01-1968
The purpose of this research is to get fundamental knowledge and to experimentally understand about combustion characteristics of the fuel mixture. This paper shows the Homogeneous Charge Compression Ignition (HCCI) characteristics of a mixture of n-Heptane and iso-Octane in a rapid compression machine. The experimental matrixes cover the n-Heptane mixing ratios, rn-Heptane, ranging from 0 to 100vol% and the equivalence ratios ranging from 0.1 to 0.6. The experimental study on the effect of mixing fuels focuses on the low temperature oxidation reaction temperatures, TL, the high temperature oxidation reaction temperatures, TH, the low temperature oxidation reaction starting times, tL, the high temperature oxidation reaction starting times, tH, and the degeneration period. The results show that as rn-Heptane decreases, tL and tH become longer and TL and TH increase by 30K. As the equivalence ratio increases, tL becomes longer but tH is not a function of equivalence ratio.
Technical Paper

Numerical Analysis of Auto Ignition and Combustion of n-Butane and Air Mixture in the Homogeneous Charge Compression Ignition Engine by Using Elementary Reactions

2003-03-03
2003-01-1090
The combustion mechanism of the homogeneous charge compression ignition (HCCI) engine has been investigated by numerical calculations. Calculations were carried out using n-butane/air elementary reactions at 0 dimension and adiabatic condition to simplify the understanding of chemical reaction mechanisms in the HCCI engine without complexities of walls, crevices, and mixture inhomogeneities. n-Butane is the fuel with the smallest carbon number in the alkane family that shows two-stage auto-ignition, heat release with low temperature reaction (LTR) and high temperature reaction (HTR), similar to higher hydrocarbons such as gasoline at HCCI combustion. The CHEMKIN II code, SENKIN and kojima's n-butane elementary reaction scheme were used for the calculations. This paper consists of three main topics. First, the heat release mechanisms of the HCCI engine were investigated. The results show that heat release with LTR is HCHO oxidation reactions.
X