Refine Your Search

Topic

Search Results

Journal Article

Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution

2013-09-08
2013-24-0041
Schlieren/shadowgraphy has been adopted in the combustion research as a standard technique for tip penetration analysis of sprays under diesel-like engine conditions. When dealing with schlieren images of reacting sprays, the combustion process and the subsequent light emission from the soot within the flame have revealed both limitations as well as considerations that deserve further investigation. Seeking for answers to such concerns, the current work reports an experimental study with this imaging technique where, besides spatial filtering at the Fourier plane, both short exposure time and chromatic filtering were performed to improve the resulting schlieren image, as well as the reliability of the subsequent tip penetration measurement. The proposed methodology has reduced uncertainties caused by artificial pixel saturation (blooming).
Technical Paper

Influence on Diesel Injection Characteristics and Behavior Using Biodiesel Fuels

2009-04-20
2009-01-0851
The aim of this paper is to present an experimental study of the influence of using biodiesel blended fuels on a standard injection system taken from a DI commercial Diesel engine. The effects have been evaluated through injection rate measurements, spray momentum and spray visualization at ambient temperature (non-evaporating condition). These tests have been done using five different injection pressures, from 300 to 1600 bar, and three back pressures: 20, 50 and 80 bar. It is well known that fuel properties like density or kinematic viscosity are higher in vegetable oils and strongly affect how injection system operates. The tests showed that the use of biodiesel fuels leads to a higher mass flow when the injector is fully open. The spray pattern is also affected, biodiesel penetrates more and the spray is narrower. Some explanations are provided in this paper in order to understand better the injection process when vegetable oils are used.
Technical Paper

Measurement of Soot Concentration in a Prototype Multi-Hole Diesel Injector by High-Speed Color Diffused Back Illumination Technique

2017-10-08
2017-01-2255
A prototype multi-hole diesel injector operating with n-heptane fuel from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bar under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution in the fuel jet from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used as a result of the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. The experiments performed in this work used one wavelength provide information about physical of the soot properties, experimental results variating the operational conditions show the reduction of soot formation with an increase in injection pressure, a reduction in ambient temperature, a reduction in oxygen concentration or a reduction in ambient density.
Technical Paper

Comparative Analysis of Particle Emission with Two Different Injectors in a CAI 2-Stroke Gasoline Engine

2016-04-05
2016-01-0747
Nowadays the main part of investigations in controlled auto-ignition (CAI) engines are centered on performance or some engine processes simulation, leaving aside particle number (PN) emission. The present work is focused on this last topic: PN emission analysis using two different injectors in a 2-stroke CAI engine, and a global comparison of PN emission of this engine with its homonymous 4-stroke engines at two operating conditions. The study was performed in a single-cylinder gasoline engine with 0.3 l displacement, equipped with an air-assisted direct-injection (DI) fuel injection system. Concerning the injectors evaluated, significant differences in PN emission have been found. When the I160X injector (narrow spray angle) was used, PN emissions were reduced. The spray cone angle during the injection event appears to be a key factor for PN emission reduction.
Technical Paper

An Investigation of Particle Size Distributions with Post Injection in DI Diesel Engines

2011-04-12
2011-01-1379
In-cylinder emission control strategies, such as modifications of injection pressure and injection timing, have been used by researchers in order to reduce exhaust emissions and to comply with the legislation standards. Since some years ago post-injections have been studied and are well known as being efficient for soot emissions reduction. Although is well known that diesel gaseous and particle mass emissions have been reduced progressively over the last twenty years in response to the restrictive emission legislation and due to the application of new technologies The aim of this work is to help develop and understand the effect of the post-injection on diesel exhaust particle size distributions. The approach is to use a modern, well instrumented research engine equipped with a flexible high pressure fuel injection system. The results of this work are available to help provide guidelines for strategies to achieve reductions of the particle size distributions in diesel engines.
Technical Paper

Nozzle Geometry Size Influence on Reactive Spray Development: From Spray B to Heavy Duty Applications

2017-03-28
2017-01-0846
In the present work a constant-pressure flow facility able to reach 15 MPa ambient pressure and 1000 K ambient temperature has been employed to carry out experimental studies of the combustion process at Diesel engine like conditions. The objective is to study the effect of orifice diameter on combustion parameters as lift-off length, ignition delay and flame penetration, assessing if the processing methodologies used for a reference nozzle are suitable in heavy duty applications. Accordingly, three orifice diameter were studied: a spray B nozzle, with a nominal diameter of 90 μm, and two heavy duty application nozzles (diameter of 194 μm and 228 μm respectively). Results showed that nozzle size has a substantial impact on the ignition event, affecting the premixed phase of the combustion and the ignition location. On the lift-off length, increasing the nozzle size affected the combustion morphology, thus the processing methodology had to be modified from the ECN standard methodology.
Technical Paper

Influence of DPF Soot Loading on Engine Performance with a Pre-Turbo Aftertreatment Exhaust Line

2012-04-16
2012-01-0362
The pressure drop across the aftertreatment systems directly affects the fuel economy as a function of the flow characteristics and also the soot loading in the case of the Diesel particulate filter. However, the relative position of this system with respect to the turbine has an additional effect which is dependent on the influence of the turbine expansion ratio. When the DPF is placed upstream of the turbine, its pressure drop is not affected by the multiplicative effect of the turbine expansion ratio to set the exhaust manifold pressure. This work concentrates on the analysis of the influence that the aftertreatment pressure drop has on the engine performance depending on the DPF soot loading and the location of the aftertreatment with respect to the turbine. The interaction with the turbocharger and the EGR operation is also analyzed taking as reference a two stage turbocharger heavy duty Diesel engine.
Technical Paper

Schlieren Measurements of the ECN-Spray A Penetration under Inert and Reacting Conditions

2012-04-16
2012-01-0456
In the wake of the Turbulent Nonpremixed Flames group (TNF) for atmospheric pressure flames, an open group of laboratories belonging to the Engine Combustion Network (ECN) agreed on a list of boundary conditions -called “Spray A”- to study the free diesel spray under steady-state conditions. Such conditions are relevant of a diesel engine operating at low temperature combustion conditions with moderate EGR, small nozzle and high injection pressure. The objective of this program is to accelerate the understanding of diesel flames, by applying each laboratory's knowledge and skills to a specific set of boundary conditions, in order to give an extensive and reliable experimental database to help spray modeling. In the present work, “Spray A” operating condition has been achieved in a constant pressure, continuous flow vessel. Schlieren high-speed imaging has been conducted to measure the spray penetration under evaporative conditions.
Technical Paper

Performance Evaluation and Components Behavior of Light Duty Diesel Engine after 300 Hours Test Fuelled with Pure Biodiesel: Effects on Reliability and Durability

2012-04-16
2012-01-0865
Pure biodiesel is non-toxic, biodegradable and greenhouse gas neutral alternative fuel with potential successful future but reduced quantitative information is available about the impact of biodiesel on engine durability and long period usage effects. In this study, a commercial light duty Diesel engine installed on an engine test bench has been operated fuelled with pure biodiesel (B100 referred to the EN-14214 standard) during a period test of 300 hours in order to analyze engine performance and components behavior. A engine characterization has been completed using conventional diesel fuel (EN 590). Then, following a specific defined operation cycle and fuelled with pure biodiesel, a study over different engine components such as: engine oil, fuel filters, Diesel Particulate Filter (DPF), so on, has been done in order to obtain possible negative effects and modifications required over maintenance policies applied to them.
Technical Paper

Evaluation of Emissions and Performances from Partially Premixed Compression Ignition Combustion using Gasoline and Spark Assistance

2013-04-08
2013-01-1664
Several new combustion concepts have been developed during last decade with the aim of reducing pollutant emissions. Specifically, these strategies allow a simultaneous reduction of NOx and soot emissions by reducing the local combustion temperatures, enhancing the fuel/air mixing (PCCI, HCCI…). In spite of their benefits, these concepts present difficulties controlling the appropriate combustion phasing as well as high knocking levels and therefore, their operating range is reduced to low-medium loads. In this work gasoline is considered as a fuel in order to improve combustion strategies based on fully or partially premixed combustion in CI engines. Its use provides more flexibility to achieve lean and low combustion temperature, however the concept has demonstrated difficulty under light load conditions using gasoline with ON up to 95.
Technical Paper

Transient Rate of Injection Effects on Spray Development

2013-09-08
2013-24-0001
Transients in the rate of injection (ROI) with respect to time are ever-present in direct-injection engines, even with common-rail fueling. The shape of the injection ramp-up and ramp-down affects spray penetration and mixing, particularly with multiple-injection schedules currently in practice. Ultimately, the accuracy of CFD model predictions used to optimize the combustion process depends upon the accuracy of the ROI utilized as fuel input boundary conditions. But experimental difficulties in the measurement of ROI, as well as real-world affects that change the ROI from the bench to the engine, add uncertainty that may be mistaken for weaknesses in spray modeling instead of errors in boundary conditions. In this work we use detailed, time-resolved measurements of penetration at the Spray A conditions of the Engine Combustion Network to rigorously guide the necessary ROI shape required to match penetration in jet models that allow variable rate of injection.
Journal Article

High-Speed Thermographic Analysis of Diesel Injector Nozzle Tip Temperature

2022-03-29
2022-01-0495
The temperature of fuel injectors can affect the flow inside nozzles and the subsequent spray and liquid films on the injector tips. These processes are known to impact fuel mixing, combustion and the formation of deposits that can cause engines to go off calibration. However, there is a lack of experimental data for the transient evolution of nozzle temperature throughout engine cycles and the effect of operating conditions on injector tip temperature. Although some measurements of engine surface temperature exist, they have relatively low temporal resolutions and cannot be applied to production injectors due to the requirement for a specialist coating which can interfere with the orifice geometry. To address this knowledge gap, we have developed a high-speed infrared imaging approach to measure the temperature of the nozzle surface inside an optical diesel engine.
Technical Paper

The Use of Transfer Matrix for the Design of Interferencial Systems in Exhaust Mufflers

2000-03-06
2000-01-0728
One of the main problems in the design of exhaust silencers is the attenuation of low frequency noise. At these frequencies is where the influence of the engine has more importance; moreover, low frequency noise has the possibility of interaction with the mechanical resonances of the exhaust line, producing additional noise and vibration highly disturbing. A suitable solution to this problem is the use of the interferencial behaviour between two acoustic parallel paths, which produces high attenuation at a given frequency associated with the difference between the acoustic lengths of both paths. In the present paper, a general expression for the 4-pole transfer matrix of an interferencial system with two arbitrary branches is presented, which is applied to a simple but realistic exhaust silencer. Results are compared with the transmission loss measured with a modified impulse method, with good agreement between the model and the measurements.
Technical Paper

Experimental Analysis of the Influence of Exhaust Manifold Junction Geometry on its Fluid-Dynamic Behavior

2000-03-06
2000-01-0914
The purpose of this paper is to present the results of a study on the exhaust junctions geometry. Twelve three-branch junctions of different geometry have been tested on a single cylinder engine. The parameters studied have been exhaust junction outlet-to-inlet diameter ratio, length, angle between inlet branches and the existence of a reed separating inlet branches. An analysis of the pressure waves amplitude (incident, reflected and transmitted) obtained from instantaneous pressure measurements in some locations around the junction has been carried out. The analysis of results shows that junction length has a low influence on its behavior. The ratio between inlet and outlet branches diameters increases both reflection and directionality (avoiding pressure wave transmission to the adjacent branch). The existence of a reed separating the inlet flows may increase directionality with moderate pressure losses if the throat area is not reduced.
Technical Paper

On the Influence of Manifold Geometry on Exhaust Noise

1999-05-17
1999-01-1650
The influence of manifold geometry on exhaust noise is studied. First, a linear description of the problem is presented, so that potential relevant factors may be identified. Then a full non-linear simulation is performed, for a simple geometry, in order to check, in more realistic conditions, the ideas obtained from the linear theory. The results indicate that, although some qualitative trends may be obtained from the linear analysis, the role of back-reaction of the manifold on the engine (a non-linear coupling effect) may be determinant.
Technical Paper

Simulation of the First Millimeters of the Diesel Spray by an Eulerian Spray Atomization Model Applied on ECN Spray A Injector

2014-04-01
2014-01-1418
The Fick's law is commonly used to model diffusion problems, but from some time ago it has been also used to model liquid jet atomization and mixing into gaseous atmosphere under certain hypothesis. An OpenFOAM computer model based on this principle has been developed and validated on axisymmetric geometries. This model has also been used to study the atomization process on the Engine Combustion Network (ECN) single-hole Spray A injector. Results have been compared to X-Ray and Mie-Scattering experimental data, showing that the Fick's law and its variants predict well the liquid core but tend to over-predict the spray angle/width in the first millimeters after the nozzle exit.
Technical Paper

Nozzle Flow and Spray Development One-Way Coupling Methodology for a Multi-Hole GDi Injector

2019-09-09
2019-24-0031
The use of predictive models in the study of Internal Combustion Engines (ICE) allows reducing developing cost and times. However, those models are challenging due to the complex and multi-phase phenomena occurring in the combustion chamber, but also because of the different spatial and temporal scales in different components of the injection systems. This work presents a methodology to accurately simulate the spray by Discrete Droplet Models (DDM) without experimentally measuring the injector mass flow rate and/or momentum flux. Transient nozzle flow simulations are used instead to define the injection conditions of the spray model. The methodology is applied to a multi-hole Gasoline Direct injection (GDi) injector. Firstly, the DDM constant values are calibrated comparing simulation results to Diffused Back-light Illumination (DBI) experimental technique results. Secondly, transient nozzle flow simulations are carried out.
Technical Paper

Mixture Model Approach for the Study of the Inner Flow Dynamics of an AdBlue Dosing System and the Characterization of the Near-Field Spray

2021-04-06
2021-01-0548
Selective Catalytic Reduction stands for an effective methodology for the reduction of NOx emissions from Diesel engines and meeting current and future EURO standards. For it, the injection of Urea Water Solution (UWS) plays a major role in the process of reducing the NOx emissions. A LES approach for turbulence modelling allows to have a description of the physics which is a very useful tool in situations where experiments cannot be performed. The main objective of this study is to predict characteristics of the flow of interest inside the injector as well as spray morphology in the near field of the spray. For it, the nozzle geometry has been reconstructed from X-Ray tomography data, and an Eulerian-Eulerian approach commonly known as Mixture Model has been applied to study the liquid phase of the UWS with a LES approach for turbulence modeling. The injector unit is subjected to typical low-pressure working conditions.
Technical Paper

Application of Pre-DPF Water Injection Technique for Pressure Drop Limitation

2015-04-14
2015-01-0985
Wall-flow diesel particulate filters have become the most effective system for particulate matter abatement in Diesel engines being required for current and future emission standards fulfillment. Despite the high filtration efficiency that wall-flow DPFs exhibit their use involves a noticeable impact in fuel consumption because of the increase of the exhaust back-pressure. Additionally, the fuel economy penalty increases as the DPF becomes soot/ash loaded. This constraint demands the approach and development of new solutions to reduce the DPF pressure drop. This paper focuses on the improvement of the ratio between the pressure drop and the loading by means of pre-DPF water injection. A proper management of the water injection events is able to completely remove the dependence between these magnitudes. The test campaign and the discussion of the experimental results address how the DPF pressure drop reduction leads to benefits in engine fuel consumption.
Journal Article

Aging of a Multi-Hole Diesel Injector and Its Effect on the Rate of Injection

2020-04-14
2020-01-0829
In order to comply with the increasingly restrictive limits of emissions and fuel consumption, researches are focusing on improving the efficiency of combustion engines. In this area, the aging of the injector and its effect on the injection development is not entirely analyzed. In this work, the rate of injection of a diesel injector at different stages of its lifetime is analyzed. To this end, a multi-hole piezoelectric injector was employed, comparing the injection rate measured at the beginning of its lifetime to the rate provided by the injector after aging, maintaining the same boundary conditions in both measurements. Injection pressures up to 200 MPa were used throughout the experiments. The results showed that the steady-state rate of injection was lower after the injector aged. Furthermore, the injector took a longer time to close the needle and end the injection, in comparison with the measurements done at earlier stages of its lifetime.
X