Refine Your Search

Topic

Author

Search Results

Journal Article

Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution

2013-09-08
2013-24-0041
Schlieren/shadowgraphy has been adopted in the combustion research as a standard technique for tip penetration analysis of sprays under diesel-like engine conditions. When dealing with schlieren images of reacting sprays, the combustion process and the subsequent light emission from the soot within the flame have revealed both limitations as well as considerations that deserve further investigation. Seeking for answers to such concerns, the current work reports an experimental study with this imaging technique where, besides spatial filtering at the Fourier plane, both short exposure time and chromatic filtering were performed to improve the resulting schlieren image, as well as the reliability of the subsequent tip penetration measurement. The proposed methodology has reduced uncertainties caused by artificial pixel saturation (blooming).
Journal Article

Investigations on the Heat Transfer in a Single Cylinder Research SI Engine with Gasoline Direct Injection

2015-04-14
2015-01-0782
In this work, heat loss was investigated in homogeneous and stratified DI-SI operation mode in a single cylinder research engine. Several thermocouples were adapted to the combustion chamber surfaces. The crank angle resolved temperature oscillations at the cylinder head and piston surface could thereby be measured in homogeneous and stratified operation mode. A grasshopper linkage was designed and adapted to the engine, to transfer the piston signals to the data acquisition device. The design of the experimental apparatus is described briefly. For both operation modes the average steady-state temperatures of the combustion chamber surfaces were compared. The temperature distribution along the individual sensor positions at the cylinder head and piston surface are shown. Furthermore, the curves of the crank angle resolved temperature oscillations in stratified and homogeneous operation mode were compared.
Technical Paper

Influence of the MeFo and DMC Content in the Fuel on the Gasoline DI Spray Characteristics with the Focus on Droplet Speed and Size

2021-09-21
2021-01-1191
E-fuels are proven to be a major contributing factor to reduce CO2 emissions in internal combustion engines. In gasoline engines, C1 oxygenate are seen as critical to reach CO2 and emission reduction goals. Their properties affect the fuel injection characteristics and thus the fuel mixture formation and combustion emissions. To exploit the full potential of e-fuels, the detailed knowledge of their spray characteristic is necessary. The correlation between the fuel content of C1 oxygenates and particulate emissions do not appear to be linear. To understand this correlation, the spray characteristics have to be investigated in detail. The reduced stoichiometric air requirement leads to an increase of the injected fuel mass, which has to evaporate. This can lead to a changed fuel film interaction within the combustion chamber walls and therefore a change of particle formation.
Journal Article

Thermodynamic and Optical Investigations on Particle Emissions in a DISI Engine at Boosted Operation

2015-09-01
2015-01-1888
The subject of this paper is the reduction of the particle number emissions of a gasoline DI engine at high engine load (1.4 MPa IMEP). To reduce the particle number emissions, several parameters are investigated: the large scale charge motion (baseline configuration, tumble and swirl) can be varied at the single cylinder engine by using inlays in the intake port. The amount of residual gas can be influenced by the exhaust backpressure. By using a throttle valve, the exhaust backpressure can be set equal to the intake pressure and hence simulate a turbocharger's turbine in the exhaust system or the throttle valve can be wide open and thus simulate an engine using a supercharger. Additionally, higher fuel injection pressure can help to enhance mixture formation and thus decrease particulate formation. Therefore, a solenoid injector with a maximum pressure of 30 MPa is used in this work.
Journal Article

Experimental Investigations of a DISI Engine in Transient Operation with Regard to Particle and Gaseous Engine-out Emissions

2015-09-01
2015-01-1990
The investigation of transient engine operation plays a key role of the future challenges for individual mobility in terms of real driving emissions (RDE). A fundamental investigation of the transient engine operation requires the simultaneous application of measurement technologies for an integrated study of mixture formation, combustion process and emission formation. The major prerequisite is the combustion cycle and crank angle resolved analysis of the process for at least several individual consecutive combustion cycles during transient operation. The investigations are performed with a multi cylinder DISI engine at an Engine-in-the-Loop test bench, able to operate the engine in driving cycles as well as within target profiles (e.g. speed and torque profiles). The research project describes the methodology of analyzing elementary transient operational phases, (e.g. different variants of load steps).
Journal Article

Optical Investigations of Soot Formation Mechanisms and Possible Countermeasures on a Turbocharged Port Fuel Injection SI Engine

2016-10-17
2016-01-2163
Despite the known benefits of direct injection (DI) spark ignition (SI) engines, port fuel injection (PFI) remains a highly relevant injection concept, especially for cost-sensitive market segments. Since particulate number (PN) emissions limits can be expected also for PFI SI engines in future emission legislations, it is necessary to understand the soot formation mechanisms and possible countermeasures. Several experimental studies demonstrated an advantage for PFI SI engines in terms of PN emissions compared to DI. In this paper an extended focus on higher engine loads for future test cycles or real driving emissions testing (RDE) is applied. The combination of operating parameter studies and optical analysis by high-speed video endoscopy on a four-cylinder turbocharged SI engine allows for a profound understanding of relevant soot formation mechanisms.
Journal Article

High-Speed Imaging of Early Flame Growth in Spark-Ignited Engines Using Different Imaging Systems via Endoscopic and Full Optical Access

2016-04-05
2016-01-0644
This work investigates the image quality achievable with a large-aperture endoscope system and high-speed cameras in terms of detecting the premixed flame boundary in spark-ignited engines by chemiluminescence imaging. The study is an extension of our previous work on endoscopic flame imaging [SAE 2014-01-1178]. In the present work, two different high-speed camera systems were used together with the endoscope system in two production engines to quantify the time-resolved flame propagation. The systems were cinematography with a CMOS-camera, both with and without an intensifier, the latter variation being used in a four-cylinder automotive engine as well as in a single-cylinder motorcycle engine. An algorithm with automatic dynamic thresholding was developed to detect the line-of-sight projected flame boundary despite artifacts caused by the spark and the large dynamic range in image brightness across each time series.
Journal Article

Formation of Engine Internal NO2: Measures to Control the NO2/NOX Ratio for Enhanced Exhaust After Treatment

2017-03-28
2017-01-1017
The proportion of nitrogen dioxide in the engine-out emissions of a Diesel engine is of great importance for the conversion of the total oxides of nitrogen (NOX) emissions in SCR catalysts. Particularly at lower engine loads and lower exhaust temperatures an increase of the already low NO2/NOX fraction will enhance the SCR operation significantly. For this purpose, the understanding of the NO2 formation during the Diesel combustion and expansion stroke is as substantial as being aware of the different thermodynamic impacts and engine operating parameters that affect the formation process. To determine the influences on the NO2 emission level several variation series were performed on a single-cylinder research engine. Especially the charge dilution parameters like the air-fuel ratio and the EGR rate as well as the injection parameters could be identified to be decisive for the NO2 formation.
Journal Article

Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation

2017-03-28
2017-01-0859
The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface area density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity.
Journal Article

Influence of Fuel Composition on Exhaust Emissions of a DISI Engine during Catalyst Heating Operation

2013-10-14
2013-01-2571
Particle number measurements during different real world and legislative driving cycles show that catalyst heating, cold and transient engine operation cause increased particle number emissions. In this context the quality of mixture formation as a result of injector characteristics, in-cylinder flow, operation & engine parameters and fuel composition is a major factor. The goal of this paper is to evaluate the influence of different biogenic and alkylate fuels on the gaseous and particle number emission behavior during catalyst heating operation on a single-cylinder DISI engine. The engine is operated with a late ignition timing causing a high exhaust enthalpy flow to heat up the catalyst, a slightly lean global air fuel ratio to avoid high hydrocarbon emissions and a late injection right before the ignition to reduce the coefficient of variance of the indicated mean effective pressure.
Technical Paper

Impact of the Injection Strategy on Soot Reactivity and Particle Properties of a GDI Engine

2020-04-14
2020-01-0392
The gradual global tightening of emission legislation for particulate matter emissions requires the development of new gasoline engine exhaust aftertreatment systems. For this reason, the development of gasoline direct injection engines aims at the reduction of particulate emissions by application of a Gasoline Particulate Filter (GPF). The regeneration temperature of GPF depend on soot reactivity towards oxidation and therefore on particle properties. In this study, the soot reactivity is correlated with nanostructural characteristics of primary gasoline particles as a function of specific engine injection parameters. The investigations on particle emissions were carried out on a turbocharged 4-cylinder GDI-engine that allows the variation of injection parameters. The emitted engine soot particles have been in-situ characterized towards their number and size distribution using an engine exhaust particle sizer (EEPS).
Technical Paper

Influence on Diesel Injection Characteristics and Behavior Using Biodiesel Fuels

2009-04-20
2009-01-0851
The aim of this paper is to present an experimental study of the influence of using biodiesel blended fuels on a standard injection system taken from a DI commercial Diesel engine. The effects have been evaluated through injection rate measurements, spray momentum and spray visualization at ambient temperature (non-evaporating condition). These tests have been done using five different injection pressures, from 300 to 1600 bar, and three back pressures: 20, 50 and 80 bar. It is well known that fuel properties like density or kinematic viscosity are higher in vegetable oils and strongly affect how injection system operates. The tests showed that the use of biodiesel fuels leads to a higher mass flow when the injector is fully open. The spray pattern is also affected, biodiesel penetrates more and the spray is narrower. Some explanations are provided in this paper in order to understand better the injection process when vegetable oils are used.
Technical Paper

Characterization of Mixture Formation in a Direct Injected Spark Ignition Engine

2001-05-07
2001-01-1909
We have performed simulations and experiments to characterize the mixture formation in spray-guided direct injected spark ignition (DISI) gasoline engines and to help to understand features of the combustion process, which are characteristic for this engine concept. The 3-D computations are based on the KIVA 3 code, in which basic submodels of spray processes have been systematically modified at ETH during the last years. In this study, the break-up model for the hollow-cone spray typical for DISI engines has been validated through an extended comparison with both shadowgraphs and Mie-scattering results in a high-pressure-high-temperature, constant volume combustion cell at ambient conditions relevant for DISI operation, with and without significant droplet evaporation. Computational results in a single-cylinder research engine have been then obtained at a given engine speed for varying load (fuel mass per stroke), swirl and fuel injection pressure.
Technical Paper

Characterization of the Combustion in a Direct Injection Spark Ignition Engine

2002-03-04
2002-01-0834
The physical behavior of the combustion process in a jet-guided direct injection spark ignition engine has been investigated with three different measurement techniques. These are flame visualization by use of endoscopy, ion-current sensing at 16 different locations in the combustion chamber and the estimation of the flame temperature as well as soot concentration based on multi-wavelength-pyrometry. The results of all these measurement techniques are in good agreement between each other and give a coherent picture of the physical behavior of the combustion process and make it possible to characterize the main influence parameters on combustion. This serves as a basis for validation and improvement of simulation tools for the engine thermodynamics and combustion.
Technical Paper

Characterization and Phenomenological Modeling of Mixture Formation and Combustion in a Direct Injection Spark Ignition Engine

2002-03-04
2002-01-1138
A phenomenological model for heat release rate predictions taking into account the characteristic processes inside a direct injection gasoline engine is presented. Fuel evaporation and preparation as well as the specifics of premixed and mixing controlled combustion phase are regarded. Only a few model constants need to be set which have been fit empirically for the application in a one-cylinder research engine. This jet guided direct injection gasoline engine employs a modern common-rail injection system and runs predominantly in stratified mode. The model allows the prediction of the influence of numerous parameter variations, e.g. injection-ignition phasing, load, engine speed, swirl, etc. on the combustion process. Furthermore efficient simulations can be carried out without using expensive three-dimensional CFD (computational fluid dynamics) calculations.
Technical Paper

Measurement of Soot Concentration in a Prototype Multi-Hole Diesel Injector by High-Speed Color Diffused Back Illumination Technique

2017-10-08
2017-01-2255
A prototype multi-hole diesel injector operating with n-heptane fuel from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bar under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution in the fuel jet from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used as a result of the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. The experiments performed in this work used one wavelength provide information about physical of the soot properties, experimental results variating the operational conditions show the reduction of soot formation with an increase in injection pressure, a reduction in ambient temperature, a reduction in oxygen concentration or a reduction in ambient density.
Technical Paper

Experimental Investigations on CI and SI Combustion Mode with Naphtha Fuels for Stationary Engine Applications

2017-03-28
2017-01-0874
Throughout the world cost-efficient Naphtha streams are available in refineries. Owing to less processing, CO2 emissions emitted in the course of production of these fuels are significantly lower than with conventional fuels. In common CI/SI engines, however, the deployment of Naphtha is considerably restricted due to unfavourable fuel properties, e.g. low cetane/octane numbers. Former investigations illustrated high knocking tendency for SI applications and severe pressure rise for CI combustion. Moreover, the focus of past publications was on passenger vehicle applications. Hence, this paper centers on heavy-duty stationary engine applications. Consequently, measures to increase the technically feasible IMEP with regard to limitations in knocking behaviour and pressure rise were explored whilst maintaining efficient combustion and low emissions.
Technical Paper

Soot Model Calibration Based on Laser Extinction Measurements

2016-04-05
2016-01-0590
In this work a detailed soot model based on stationary flamelets is used to simulate soot emissions of a reactive Diesel spray. In order to represent soot formation and oxidation processes properly, a calibration of the soot reaction rates has to be performed. This model calibration is usually performed on basis of engine out soot measurements. Contrary to this, in this work the soot model is calibrated on local soot concentrations along the spray axis obtained from laser extinction chamber measurements. The measurements are performed with B7 certification Diesel and a series production multihole injector to obtain engine similar boundary conditions. In order to ensure that the flow and mixture field is captured well by the CFD-simulation, the simulated liquid penetration lengths and flame lift-off lengths are compared to chamber measurements.
Technical Paper

Comparative Analysis of Particle Emission with Two Different Injectors in a CAI 2-Stroke Gasoline Engine

2016-04-05
2016-01-0747
Nowadays the main part of investigations in controlled auto-ignition (CAI) engines are centered on performance or some engine processes simulation, leaving aside particle number (PN) emission. The present work is focused on this last topic: PN emission analysis using two different injectors in a 2-stroke CAI engine, and a global comparison of PN emission of this engine with its homonymous 4-stroke engines at two operating conditions. The study was performed in a single-cylinder gasoline engine with 0.3 l displacement, equipped with an air-assisted direct-injection (DI) fuel injection system. Concerning the injectors evaluated, significant differences in PN emission have been found. When the I160X injector (narrow spray angle) was used, PN emissions were reduced. The spray cone angle during the injection event appears to be a key factor for PN emission reduction.
Technical Paper

Nozzle Geometry Size Influence on Reactive Spray Development: From Spray B to Heavy Duty Applications

2017-03-28
2017-01-0846
In the present work a constant-pressure flow facility able to reach 15 MPa ambient pressure and 1000 K ambient temperature has been employed to carry out experimental studies of the combustion process at Diesel engine like conditions. The objective is to study the effect of orifice diameter on combustion parameters as lift-off length, ignition delay and flame penetration, assessing if the processing methodologies used for a reference nozzle are suitable in heavy duty applications. Accordingly, three orifice diameter were studied: a spray B nozzle, with a nominal diameter of 90 μm, and two heavy duty application nozzles (diameter of 194 μm and 228 μm respectively). Results showed that nozzle size has a substantial impact on the ignition event, affecting the premixed phase of the combustion and the ignition location. On the lift-off length, increasing the nozzle size affected the combustion morphology, thus the processing methodology had to be modified from the ECN standard methodology.
X