Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

SCR and SCRi® as After-treatment Systems for Low CO2 and Low NOx Vehicles

2011-01-19
2011-26-0038
On one hand, latest worldwide emissions legislation developments aim to reduce NOx and Particulate Matter (PM) emissions of all diesel engines, while on the other hand lower fuel consumption diesel engines are still required for lower fleet average CO₂ emissions. As a consequence of the chosen CO₂ optimized combustion mode, the raw NOx emission increases and as such Selective Catalytic Reduction (SCR) technology will be the future choice for high efficiency NOx aftertreatment. This paper deals with SCR technology and its derivative SCRi® technology, when diesel particle reduction is required, especially for heavy-duty applications. Alongside the developed metal catalyst technologies, a complete SCR reducing agent dosing system is presented. Emission results gained with the SCR or SCRi® technologies on European commercial engines illustrate the potential of these technologies for conversion of NOx and PM emissions.
Technical Paper

Application of a Pre-Turbocharger Catalyst (PTC) on an Indian Multi Utility Diesel Vehicle for Meeting BS IV

2011-01-19
2011-26-0024
Diesel engines tend to operate on lower exhaust temperatures, compared to their gasoline counterparts. Exhaust emission control becomes a significant issue at these lower temperatures, as any catalytic converter needs certain light off temperature to commence functioning. The trend so far has been to move the catalytic converters closer to the exhaust manifold, in order to get the benefit of higher temperatures - but most of the applications are limited to the location available after the turbo chargers. This is due the fact that very minute and efficient catalyst is required, if it has to be placed before the turbo charger. This catalyst also needs to be extremely durable to take care of high exotherms which occur within the catalysts and also to prevent any possible damage to the turbo chargers.
Technical Paper

Achieving BS-IV Emission Targets for Diesel Small Commercial Vehicle (SCV) with Close Coupled Advanced EnviCat® DOC and Coated PM Metalit® After - Treatment System

2013-01-09
2013-26-0054
Small Commercial Vehicle (SCV) is an emerging Commercial Vehicle (CV) segment both in India and throughout the world. Vehicles in this segment have diesel engine of capacity less than 1 l and GVW of less than 3.5 t. Normally for the CV, engines are tested on engine dynamometer for emission test, but SCV are tested on chassis dynamometer as they are classified as N1.1 class vehicles. Hence SCV have to follow same emission regulations as diesel passenger cars. The main challenge is to meet BS-IV NOx and PM emission target together with high torque optimization along with required durability targets. This paper addresses this challenge and reports the work carried out on an Indian SCV with 0.7 l naturally aspirated indirect injection diesel engine.
Technical Paper

Mapping Work on 2.1 Litre Petrol Engine

1996-10-01
962479
This paper describes the engine mapping work carried out on a 2.1 litre carburetted petrol engine.The purpose of this work was to improve upon the emission levels of the engine to meet 1996 emission norms with sufficient margin and to achieve best fuel economy possible. This paper deals with the strategy for the selection of speed load points required for mapping depending on engine operating zones, engine base data collection, methodology followed in engine mapping, variation of engine performance and emissions with respect to air/fuel ratio and spark timing etc. Further the mass emission predictions for different strategies like leaning the air/fuel mixture, retarding the ignition timing etc. are also discussed. Recalibration of the carburettor based on the above findings, its effect on vehicle performance are dealt with.
Technical Paper

Catalysed Diesel Particulate Filters for Passenger Car Applications - Development Concepts for the Present and the Future

2005-01-19
2005-26-023
Several diesel powered passenger car manufacturers in the European Union announced recently the future use of catalysed diesel particulate filter systems on their vehicles. The filtration of the exhaust gas is being worked on since several years. Different filter materials and filter designs proved their ability to achieve high filtration efficiencies over the lifetime of the vehicle. The major technological challenge is the periodic regeneration of the filters loaded with the retained diesel particulates. In order to promote filter regeneration, catalytic activation of the accumulated soot is advantageous. Therefore, the first serial application of diesel particulate filter system (diesel oxidation catalyst combined with an uncoated filter substrate) uses catalytically active fuel additives. These systems have been introduced about four years ago and proved to be a viable technology to clean the exhaust gas of passenger car diesel engines.
X