Refine Your Search

Search Results

Technical Paper

Updated Systems for Water Recovery from Humidity Condensate and Urine for the International Space Station

1997-07-14
972559
At the initial phase of the construction of the international space station (ISS) water supply will be provided by the systems located in the Russian segment. The paper reviews the systems for water recovery from humidity condensate and urine to be incorporated in the Russian segment of the ISS. The similar systems have been successfully operated on the Mir space station. The updates aim at enhancing system cost-effectiveness and reliability. The system for water recovery from humidity condensate (WRS-C) features an added assembly for the removal of organic contaminants to be catalytically oxidized in an air/liquid flow at ambient temperature and pressure. The system for water reclamation from urine (WRS-U) incorporates a new distillation subsystem based on vacuum distillation with a multistage rotary distiller and a vapor compression or thermoelectric heat pump. The updating of the WRS-C system will enable an increase in the multifiltration bed's life at least two fold.
Technical Paper

International Space Station Temperature and Humidity Control Subsystem Verification for Node 1

2007-07-09
2007-01-3185
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 THC subsystem design. The paper will also provide a discussion of the detailed Element Verification methodologies for nominal operation of the Node 1 THC subsystem operations utilized during the Qualification phase.
Technical Paper

Lessons Learned from the Node 1 Sample Delivery Subsystem Design

2007-07-09
2007-01-3184
This paper will provide an overview of the International Space Station (ISS) Environmental Control and Life Support (ECLS) design of the Node 1 Sample Delivery Subsystem (SDS) and it will document some of the lessons that have been learned to date for this part of the subsystem.
Technical Paper

Characteristics of Post-Sorbent and High Temperature Catalytic Oxidizer Beds After Long-Term On-Orbit Use

2007-07-09
2007-01-3180
Trace contaminants are produced on-orbit by human metabolic processes and equipment off-gassing. These potentially hazardous contaminants are removed by the Trace Contaminant Control Subassembly (TCCS) in the US segment of the International Space Station (ISS). The TCCS has been operating since February 2001. Analysis of on-orbit telemetry data indicated a slow increase in the TCCS system flow resistance over the five years of operation. Two of the packed beds within the TCCS were replaced to return the TCCS to its nominal operation conditions: the high temperature catalytic oxidizer and the post-sorbent bed. Results from the examination of the returned beds are presented along with a discussion about changes to bed service life.
Technical Paper

International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA) Desiccant/Adsorbent Bed (DAB) Orbital Replacement Unit (ORU) Redesign

2007-07-09
2007-01-3181
The Carbon Dioxide Removal Assembly (CDRA) is a part of the International Space Station (ISS) Environmental Control and Life Support (ECLS) system. The CDRA provides carbon dioxide (CO2) removal from the ISS on-orbit modules. Currently, the CDRA is the secondary removal system on the ISS, with the primary system being the Russian Vozdukh. Within the CDRA are two Desiccant/Adsorbent Beds (DAB), which perform the carbon dioxide removal function. The DAB adsorbent containment approach required improvements with respect to adsorbent containment. These improvements were implemented through a redesign program and have been implemented on units on the ground and returning from orbit. This paper presents a DAB design modification implementation description, a hardware performance comparison between the unmodified and modified DAB configurations, and a description of the modified DAB hardware implementation into the on-orbit CDRA.
Technical Paper

International Space Station Atmosphere Control and Supply, Atmosphere Revitalization, and Water Recovery and Management Subsystem - Verification for Node 1

2007-07-09
2007-01-3102
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 ACS, AR, and WRM design and detailed Element Verification methodologies utilized during the Qualification phase for Node 1.
Technical Paper

International Space Station Environmental Control and Life Support System - Verification for the Pressurized Mating Adapters

2007-07-09
2007-01-3103
The International Space Station (ISS) Pressurized Mating Adapters (PMAs) Environmental Control and Life Support (ECLS) System is comprised of three subsystems: Atmosphere Control and Supply (ACS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). PMA 1 and PMA 2 flew to ISS on Flight 2A and PMA 3 flew to ISS on Flight 3A. This paper provides a summary of the PMAs ECLS design and the detailed Element Verification methodologies utilized during the Qualification phase for the PMAs.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2006 - 2007

2007-07-09
2007-01-3098
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2006 and February 2007. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Technical Paper

International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: February 2006 - 2007

2007-07-09
2007-01-3099
The International Space Station (ISS) continues to mature and operate its life support equipment. Major events occurring between February 2006 and February 2007 are discussed in this paper, as are updates from previously ongoing hardware anomalies. This paper addresses the major ISS operation events over the last year. Impact to overall ISS operations is also discussed.
Technical Paper

Expanded Capabilities of the Extended Duration Orbiter

1990-07-01
901290
The Space Shuttle Program has recently embarked on a program which will lengthen the on-orbit stay time of the Space Shuttle. In its current configuration, the orbiter is limited to a maximum of 10 days by Environmental Control and Life Support System (ECLSS) consumables, stowage constraints, and the fuel cell reactants. The capabilities of the Extended Duration Orbiter (EDO) will permit longer duration Spacelab, Spacehab, and Commercially Developed Space Facility (CDSF) missions. Additionally, the EDO may be required for Space Station Freedom assembly operations in the late 1990's. Of the National Aeronautics and Space Administration's (NASA) fleet, both Columbia (OV-102) and Endeavour (OV-105) will be modified to accomplish extended missions of up to 16 days. As a logical follow-on, NASA is currently pursuing approval of a 28-day Extended Duration Orbiter program.
Technical Paper

Rationale and Selection of a Distillation Subsystem for Water Reclamation from Urine

1998-07-13
981714
A selection of a distillation subsystem with a rotary multistage vacuum distiller (RMVD) and a heat pump (HP) for the system for water reclamation from urine for the international space station is substantiated. The results of computational/experimental analysis of specific energy for distillation with RMVD and HP of different type used are presented. The test results of an experimental system mockup are given. It is shown that the subsystem of a given type is stable in operation, features high condensate processing rate and low specific energy demand.
Technical Paper

International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Water Recovery and Management Subsystems

2008-06-29
2008-01-2183
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 ECLS WRM subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for that subsystem.
Technical Paper

International Space Station Environmental Control and Life Support System Changes for Increasing the ISS Crew Size to Six Crew Members and for Shuttle Retirement

2008-06-29
2008-01-2178
With the long anticipated change to increase the International Space Station (ISS) crew size from three to six crew members and the retirement of the Space Shuttle, changes are in work to the International Space Station (ISS) Environmental Control and Life Support (ECLS) System to support the increased on-orbit crew size and their continued operations. The Space Shuttle had provided high pressure oxygen resupply, high pressure nitrogen resupply, water resupply, atmosphere gaseous make up when the Space Shuttle is docked to ISS, and logistic cargo supply/return capability to ISS. Without the Space Shuttle additional changes need to be made to the ISS ECLS System to support the six crew members post Assembly Complete (AC). This will be in addition to the changes that were needed to support doubling the nominal ISS crew size from three to six crew members.
Technical Paper

International Space Station Environmental Control and Life Support System Acceptance Testing for the Pressurized Mating Adapters

2008-06-29
2008-01-2182
The International Space Station (ISS) Pressurized Mating Adapters (PMAs) Environmental Control and Life Support (ECLS) System is comprised of three subsystems: Atmosphere Control and Supply (ACS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). PMAs 1 and 2 flew to ISS on Flight 2A and Pressurized Mating Adapter (PMA) 3 flew to ISS on Flight 3A. This paper provides a summary of the PMAs ECLS design and a detailed discussion of the ISS ECLS Acceptance Testing methodologies utilized for the PMAs.
Technical Paper

International Space Station Environmental Control and Life Support Emergency Response Verification for Node 1

2008-06-29
2008-01-2136
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 Emergency Response capability, which includes nominal and off-nominal FDS operation, off-nominal ACS operation, and off-nominal THC operation. These subsystems provide the capability to help aid the crew members during an emergency cabin depressurization, a toxic spill, or a fire. The paper will also provide a discussion of the detailed Node 1 ECLS Element Verification methodologies for operation of the Node 1 Emergency Response hardware utilized during the Node 1 Element Qualification phase.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2007 - 2008

2008-06-29
2008-01-2131
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2007 and February 2008. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Technical Paper

International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: February 2007-2008

2008-06-29
2008-01-2132
The International Space Station (ISS) continues to mature and operate its life support equipment. Major events occurring between February 2007 and February 2008 are discussed in this paper, as are updates from previously ongoing hardware anomalies. This paper addresses the major ISS operation events over the last year. Impact to overall ISS operations is also discussed.
Technical Paper

International Space Station Environmental Control and Life Support International Partner Integration

2008-06-29
2008-01-2134
The International Space Station (ISS) Environmental Control and Life Support (ECLS) System is continuing to be integrated with a multitude of international partner contributions. In six short months, ISS integrates ECLS systems with the Node 2, Columbus module, Japanese Logistics Module, and Automated Transfer Vehicle developed and produced by the European Space Agency (ESA) and Japanese Aerospace Exploration Agency (JAXA). The new systems provide both international unique hardware and common ISS hardware. An overview of the integrated ECLS system and the unique capabilities of each new module is provided. A spreadsheet of the common hardware and locations is provided. An overview of the on-orbit operations is provided. Adding the international partner systems makes a robust ISS ECLS system. More U.S. hardware will continue to be launched to enhance the ECLS six crew capability.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2008 – 2009

2009-07-12
2009-01-2415
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2008 and February 2009. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
X