Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Real-World Thermal Effects on Wheel Assembly Efficiency of Conventional and Electric Vehicles

2016-04-05
2016-01-0236
It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts.
Technical Paper

A Fractal-Based SI Engine Model: Comparisons of Predictions with Experimental Data

1991-02-01
910079
A quasidimensional engine simulation which uses the concepts of fractal geometry to model the effects of turbulence on flame propagation in a homogeneous charge SI engine has been developed. Heat transfer and blowby/crevice flow submodels are included in this code and the submodels chosen are found to be reasonable. The model predictions of cylinder pressure histories are then compared with experimental data over a range of loads, equivalence ratios, and engine speeds. The model is not adjusted in any manner to yield better agreement with the data, other than by tuning the simple turbulence model used so as to yield agreement with data for the nonreacting flow. However, current information about the flame wrinkling scales in an engine is inadequate. Therefore, predictions are made for three different assumptions about the flame wrinkling scales which span the range of physically possible scales.
Technical Paper

The Effects of Fuel Composition, System Design, and Operating Conditions on In-System Vaporization and Hot Start of a Liquid-Phase LPG Injection System

1998-05-04
981388
A liquid-phase port injection system for liquefied petroleum gas (LPG) generally consists of a fuel storage tank with extended capability of operating up to 600 psi, a fuel pump, and suitable fuel lines to and from the LPG fuel injectors mounted in the fuel rail manifold. Port injection of LPG in the liquid phase is attractive due to engine emissions and performance benefits. However, maintaining the LPG in the liquid phase at under-hood conditions and re-starting after hot soak can be difficult. Multiphase behavior within a liquid-phase LPG injection system was investigated computationally and experimentally. A commercial chemical equilibrium code (ASPEN PLUS™) was used to model various LPG compositions under operating conditions.
Technical Paper

Impact of Railplug Circuit Parameters on Energy Deposition and Durability

2003-10-27
2003-01-3135
A railplug is a new type of ignitor for SI engines. A model for optimizing energy deposition in a railplug ignition system is developed. The model is experimentally validated using a low voltage railplug ignition circuit. The effect of various ignition circuit parameters on the energy deposition and its rate are discussed. Durability of railplugs is an important factor in railplug circuit design. As for all spark ignitors, durability of a railplug decreases as energy deposition is increased. Therefore recommendations are made to minimize wear and increase durability, while depositing sufficient energy to attain ignition, using a railplug.
Technical Paper

Further Analysis of Railplugs as a New Type of Ignitor

1992-10-01
922167
The results of continuing investigations of a new type of ignitor, the railplug, are reported. Previous studies have shown that railplugs can produce a high velocity jet that is driven both by electromagnetic and thermal forces and that the jet velocity is strongly affected by the railplug geometry and by the electronics characteristics of the follow-on circuit. The present research was intended to provide insights about both: 1) how to match the electronics characteristics to a given geometry and 2) how the geometry affects the jet velocity. It is found that faster current rise times result in higher plasma velocities but current pulses that are too short result in rapid deceleration of the plasma while it is still within the railplug. It is also found that a fundamental geometric parameter is the ratio of the inductance gradient to the volume trapped within the railplug: the larger L′/V, the faster the resulting combustion process.
Technical Paper

A New Ignitior for Large-Bore Natural Gas Engines - Railplug Design Improvement and Optimization

2005-04-11
2005-01-0249
It is a very challenging problem to reliably ignite extremely lean mixtures, especially for the low speed, high load conditions of large-bore natural gas engines. If these engines are to be use for the distributed power generation market, it will require operation with higher boost pressures and even leaner mixtures. Both place greater demands on the ignition system. The railplug is a very promising ignition system for lean burn natural gas engines with its high-energy deposition and high velocity plasma arc. It requires care to properly design railplugs for this new application, however. For these engines, in-cylinder pressure and mixture temperature are very high at the time of ignition due to the high boost pressure. Hot spots may exist on the electrodes of the ignitor, causing pre-ignition problems. A heat transfer model is proposed in this paper to aid the railplug design. The electrode temperature was measured in an operating natural gas engine.
X