Refine Your Search

Search Results

Viewing 1 to 10 of 10
Standard

GLOSSARY OF TERMS - AIRCRAFT GROUND REFUELING

2007-12-04
AIR4783
This SAE Aerospace Information Report (AIR) presents a glossary of terns commonly utilized in the ground delivery of fuel to an aircraft and some terms relating to the aircraft being refueled.
Standard

Minimization of Electrostatic Hazards in Aircraft Fuel Systems

2013-08-09
AIR1662A
This SAE Aerospace Information Report (AIR) provides background information, technical data and related technical references for minimization of electrostatic hazards in aircraft fuel systems. Techniques used to minimize the electrostatic hazard include: a Reducing fueling rate into tank bays including use of multiple refueling inlet nozzles. b Reducing refuel plumbing flow velocities. c Introducing fuel into the tank at a low velocity near the bottom and directing it to impinge upon a grounded conducting surface. d Avoiding electrically isolated conductors in the fuel tank. e Using conductivity additives in the fuel.
Standard

ELECTRICAL BONDING OF AIRCRAFT FUEL SYSTEM PLUMBING SYSTEMS

2007-12-04
AIR5128
This SAE Aerospace Information Report (AIR) is limited to the subject of aircraft fuel system plumbing systems and the questions concerning the requirements for electrical bonding of the various components of the system as related to Static Electric Charges, Electromagnectic Interference (EMI) and Lightning Strikes (Direct and Indirect Effects)
Standard

FIRE TESTING OF FLUID HANDLING COMPONENTS FOR AIRCRAFT ENGINES AND AIRCRAFT ENGINE INSTALLATIONS

1996-08-01
AS4273
This document establishes requirements, test procedures, and acceptance criteria for the fire testing of fluid handling components and materials used in aircraft fluid systems. It is applicable to fluid handling components other than those prescribed by AS1055 (e.g., hoses, tube assemblies, coils, fittings). It also is applicable to materials, wiring, and components such as reservoirs, valves, gearboxes, pumps, filter assemblies, accumulators, fluid-cooled electrical/electronic components, in-flight fluid system instrumentation, hydromechanical controls, actuators, heat exchangers, and manifolds. These components may be used in fuel, lubrication, hydraulic, or pneumatic systems.
Standard

Considerations on Ice Formation in Aircraft Fuel Systems

2006-08-24
AIR790C
Ice formation in aircraft fuel systems results from the presence of dissolved and undissolved water in the fuel. Dissolved water or water in solution with hydrocarbon fuels constitutes a relatively small part of the total water potential in a particular system with the quantity dissolved being primarily dependent on the fuel temperature and the water solubility characteristics of the fuel. One condition of undissolved water is entrained water such as water particles suspended in the fuel as a result of mechanical agitation of free water or conversion of dissolved water through temperature reduction. Another condition of undissolved water is free water which may be introduced as a result of refueling or the settling of entrained water which collects at the bottom of a fuel tank in easily detectable quantities separated by a continuous interface from the fuel above. Water may also be introduced as a result of condensation from air entering a fuel tank through the vent system.
X