Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Computer Application in Converter Development from Concept to Manufacturing

2001-11-01
2001-28-0046
Conventional catalytic converter developments driven by trial and error attempts by experts who successfully employ heuristics (a set of empirical rules gained through time and experience) will not be able to meet the current demanding needs. The cost and time involved in testing every catalytic converter mandates new approaches aimed at improving efficiency and reducing development lead time. Computational tools such as HeatCad, P-Cat, CatHeat, WAVE, Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA) and Monte-Carlo simulation are sequentially applied to design, optimize and manufacture catalytic converter. Heatcad analysis provides the way to identify thermal management issues and to optimize runner lengths and material thickness of the manifold, and downpipes. P-Cat is used to estimate back pressure due to substrates, washcoat, end cones, and inlet/outlet pipes. CatHeat analysis is used to predict the temperature profile across the converter.
Technical Paper

Criticality of Tube Bending Through CAE Understanding

2016-04-05
2016-01-1366
Tube bends are critical in an exhaust system. The acceptability of tube bends is based on the induced level of shape imperfections considered. An analysis is presented for the performance tuning of the genetic algorithm including the importance of raw material selection, ovality and elongation property. This study is an attempt to analyze the ovality effect of STAC 60/60 material. CAE tools are essential to exploit the design of experiments and find out the optimum values of the design parameters in comparison with full factorial designs. Especially the effects of materials, dimensions and geometry shape of the ultimate strength were discussed by both CAE and experiments. The ultimate strength of steel tube was evaluated at least 20-30% as a local strain independent of the materials. The dependency of ultimate bending angle on original centre angle of the tube bend was clarified.
Technical Paper

Durability Improvisation of Exhaust System Resonator Internal

2013-01-09
2013-26-0053
A combined Computer Aided Engineering (CAE) simulation and physical fatigue testing of a passenger car exhaust system resonator with wire mesh seal between the inlet and outlet pipe is performed to evaluate the durability and improvise the design. The outlet pipe end cap of the exhaust system resonator deformed and cracked at the fillet region repeatedly upon the application of the maximum load from a pre developed accelerated specification test. However, the system meets the end usage on-road durability target of 5 years / 1,00,000 km. There is a gap between the accelerated bench test and the end usage durability target. The current study correlates CAE simulation and biaxial fatigue testing and improvise possible alternate resonator design. Conventionally, components passing the accelerated test always meets the end usage durability target whereas components meeting the end usage durability target need not necessarily pass the accelerated test.
Technical Paper

Catalytic Converter Design, Development and Manufacturing

2000-01-15
2000-01-1417
Computer aided engineering is used to design, develop, optimize and manufacture catalytic converter. Heatcad, a transient heat transfer analysis is used to simulate the temperature response in the exhaust system to locate the catalytic converter to achieve maximum performance. Heatcad analysis provides the easy way to identify thermal management issues and to design and optimize the runner lengths and material thicknesses of the manifold, and downpipes. P-Cat is used to estimate back pressure due to substrates, end cones, and inlet/outlet pipes. Catheat, a one dimentional heat transfer tool is used to identify the converter insulation to maintain the required external skin temperature. Computational Fluid Dynamics (CFD) analysis, a powerful means of simulating complex fluid flow situations in the exhaust system, is used to optimize the converter inlet and outlet cones and the downpipes to obtain uniform exhaust gas flow to achieve maximum converter performance and reduce mat erosion.
Technical Paper

CFD Investigation of Thermal Fluid Flow and Conversion Characteristics of the Catalytic Converter

1999-03-01
1999-01-0462
Fluid flow, temperature prediction, thermal response and light-off behavior of the catalytic converter were investigated using Computational Fluid Dynamics (CFD), combined with a conjugate heat transfer and a chemical reaction model. There are two objectives in this study: one to predict the maximum operation temperature for appropriate materials selection; and the other, to develop a numerical model which can be adjusted to reflect changes in the catalyst/washcoat formulation to accurately predict effects on the flow, temperature and light-off behavior. Temperature distributions were calculated for exhaust gas, catalyzed substrate, mounting mat and converter skin. Converter shell skin temperature was obtained for different mat materials. By changing reactant mass concentrations and noble metal loading, the converter light-off behavior, thermal response and temperature distributions were changed.
Technical Paper

Computational Simulation to Ascertain Hot Vibration Test Assembly for Converter Validation

2015-01-14
2015-26-0214
Automotive exhaust system components are exposed to many types of vibrations, from simple sinusoidal to maximum random excitations. Computer-Aided engineering (CAE) plays an inevitable role in design and validation of hot vibration shaker assembly. Key Life Test (KLT), an accelerated hot vibration durability test, is established to demonstrate the robustness of a catalytic converter. The conditions are chosen such a way that the parts which passes key life test will always pass in the field, whereas the parts which fail in the key life test need not necessarily fail in the field. The hot end system and the test assembly should survive in these aggressive targeted conditions. The test fixture should be much more robust than the components that it should not fail even if the components fail. This paper reveals the computational methodology adopted to address the design, development and validation of the test assembly.
Technical Paper

Heat Shield Insulation for Thermal Challenges in Automotive Exhaust System

2019-11-21
2019-28-2539
While advanced automotive system assemblies contribute greater value to automobile safety, reliability, emission/noise performance and comfort, they are also generating higher temperatures that can reduce the functionality and reliability of the system over time. Thermal management and proper insulation are extremely important and highly demanding for the functioning of BSVI and RDE vehicles. Frugal engineering is mandatory to develop heat shield in the exhaust system with minimum heat loss. Heat shield design parameters such as insulation material type, insulation material composition, insulation thickness, insulation density, air gap thickness and outer layer material are studied for their influences on skin temperature using mathematical calculation, CFD simulation and measurement. Simulation results are comparable to that of the test results within 10% deviation.
X