Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Measurement of Soot Concentration in a Prototype Multi-Hole Diesel Injector by High-Speed Color Diffused Back Illumination Technique

2017-10-08
2017-01-2255
A prototype multi-hole diesel injector operating with n-heptane fuel from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bar under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution in the fuel jet from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used as a result of the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. The experiments performed in this work used one wavelength provide information about physical of the soot properties, experimental results variating the operational conditions show the reduction of soot formation with an increase in injection pressure, a reduction in ambient temperature, a reduction in oxygen concentration or a reduction in ambient density.
Technical Paper

Comparative Analysis of Particle Emission with Two Different Injectors in a CAI 2-Stroke Gasoline Engine

2016-04-05
2016-01-0747
Nowadays the main part of investigations in controlled auto-ignition (CAI) engines are centered on performance or some engine processes simulation, leaving aside particle number (PN) emission. The present work is focused on this last topic: PN emission analysis using two different injectors in a 2-stroke CAI engine, and a global comparison of PN emission of this engine with its homonymous 4-stroke engines at two operating conditions. The study was performed in a single-cylinder gasoline engine with 0.3 l displacement, equipped with an air-assisted direct-injection (DI) fuel injection system. Concerning the injectors evaluated, significant differences in PN emission have been found. When the I160X injector (narrow spray angle) was used, PN emissions were reduced. The spray cone angle during the injection event appears to be a key factor for PN emission reduction.
Technical Paper

Nozzle Flow and Spray Development One-Way Coupling Methodology for a Multi-Hole GDi Injector

2019-09-09
2019-24-0031
The use of predictive models in the study of Internal Combustion Engines (ICE) allows reducing developing cost and times. However, those models are challenging due to the complex and multi-phase phenomena occurring in the combustion chamber, but also because of the different spatial and temporal scales in different components of the injection systems. This work presents a methodology to accurately simulate the spray by Discrete Droplet Models (DDM) without experimentally measuring the injector mass flow rate and/or momentum flux. Transient nozzle flow simulations are used instead to define the injection conditions of the spray model. The methodology is applied to a multi-hole Gasoline Direct injection (GDi) injector. Firstly, the DDM constant values are calibrated comparing simulation results to Diffused Back-light Illumination (DBI) experimental technique results. Secondly, transient nozzle flow simulations are carried out.
Technical Paper

Mixture Model Approach for the Study of the Inner Flow Dynamics of an AdBlue Dosing System and the Characterization of the Near-Field Spray

2021-04-06
2021-01-0548
Selective Catalytic Reduction stands for an effective methodology for the reduction of NOx emissions from Diesel engines and meeting current and future EURO standards. For it, the injection of Urea Water Solution (UWS) plays a major role in the process of reducing the NOx emissions. A LES approach for turbulence modelling allows to have a description of the physics which is a very useful tool in situations where experiments cannot be performed. The main objective of this study is to predict characteristics of the flow of interest inside the injector as well as spray morphology in the near field of the spray. For it, the nozzle geometry has been reconstructed from X-Ray tomography data, and an Eulerian-Eulerian approach commonly known as Mixture Model has been applied to study the liquid phase of the UWS with a LES approach for turbulence modeling. The injector unit is subjected to typical low-pressure working conditions.
Technical Paper

A Modeling Tool for Particulate Emissions in GDI Engines with Emphasis on the Injector Zone

2023-04-11
2023-01-0182
Fuel film deposits on combustion chamber walls are understood to be the main source of particle emissions in GDI engines under homogenous charge operation. More precisely, the liquid film that remains on the injector tip after the end of injection is a fuel rich zone that undergoes pyrolysis reactions leading to the formation of poly-aromatic hydrocarbons (PAH) known to be the precursors of soot. The physical phenomena accompanying the fuel film deposit, evaporation, and the chemical reactions associated to the injector film are not yet fully understood and require high fidelity CFD simulations and controlled experimental campaigns in optically accessible engines. To this end, a simplified model based on physical principles is developed in this work, which couples an analytical model for liquid film formation and evaporation on the injector tip with a stochastic particle dynamics model for particle formation.
X