Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Standard

Oxygen Systems for General Aviation

2001-10-01
HISTORICAL
AIR822A
This SAE Aerospace Information Report (AIR) provides a general overview of oxygen systems for general aviation use. Included are a brief review of the factors and effects of hypoxia, system descriptions, and mission explanations for system or component selection, and techniques for safe handling of oxygen distribution systems.
Standard

Oxygen Systems for General Aviation

2006-06-05
HISTORICAL
AIR822B
This SAE Aerospace Information Report (AIR) provides a general overview of oxygen systems for general aviation use. Included are a brief review of the factors and effects of hypoxia, system descriptions, and mission explanations for system or component selection, and techniques for safe handling of oxygen distribution systems.
Standard

Oxygen Systems for General Aviation

2014-07-11
CURRENT
AIR822C
This SAE Aerospace Information Report (AIR) provides a general overview of oxygen systems for general aviation use. Included are a brief review of the factors and effects of hypoxia, system descriptions, and mission explanations for system or component selection, and techniques for safe handling of oxygen distribution systems.
Standard

Minimum Standards for Valve, High Pressure Oxygen, Line Shut Off, Manually Operated

2004-06-23
HISTORICAL
AS1214A
This standard covers all types of manually operated high pressure oxygen line shut off valves utilizing either metallic or nonmetallic valve seats for use in general and commercial type aircraft. It is intended that the line valve should be installed in a position accessible in flight, when the cylinder mounted oxygen valves are not. The line shutoff valve may also be used optionally in large systems as a maintenance aid where only a portion of the system need be opened up and purged after repair or replacement of one or more parts.
Standard

MINIMUM STANDARDS FOR VALVE, HIGH PRESSURE OXYGEN, LINE SHUT OFF, MANUALLY OPERATED

1971-07-01
HISTORICAL
AS1214
This standard covers all types of manually operated high pressure oxygen line shut off valves utilizing either metallic or nonmetallic valve seats for use in general and commercial type aircraft. It is intended that the line valve should be installed in a position accessible in flight, when the cylinder mounted oxygen valves are not. The line shutoff valve may also be used optionally in large systems as a maintenance aid where only a portion of the system need be opened up and purged after repair or replacement of one or more parts.
Standard

Protective Breathing Equipment for Flight Deck and Cabin Crew Members

2023-01-26
CURRENT
AIR825/10A
This SAE Aerospace Information Report (AIR) provides general information to aircraft engineers, regarding the types of Protective Breathing Equipment (PBE) configurations which are available, the intended functions of such equipment, and the technical approaches which may be used in accomplishing these functions. The term "PBE" or "Protective Breathing Equipment" has been used to refer to various types of equipment, which are used in a variety of applications. This way of using the terminology has been a source of confusion in the aviation industry. One objective of this AIR is to assist the reader in distinguishing between the types of PBE applications. A further objective is to assist in understanding the technical approaches which can be used in each of the major applications. Principles of PBE design are reviewed briefly.
Standard

Protective Breathing Equipment for Flight Deck and Cabin Crew Members

2002-02-04
HISTORICAL
AIR825/10
This SAE Aerospace Information Report (AIR) provides general information to aircraft engineers, regarding the types of Protective Breathing Equipment (PBE) configurations which are available, the intended functions of such equipment, and the technical approaches which may be used in accomplishing these functions. The term "PBE" or "Protective Breathing Equipment" has been used to refer to various types of equipment, which are used in a variety of applications. This way of using the terminology has been a source of confusion in the aviation industry. One objective of this AIR is to assist the reader in distinguishing between the types of PBE applications. A further objective is to assist in understanding the technical approaches which can be used in each of the major applications. Principles of PBE design are reviewed briefly.
Standard

Guide for Evaluating Combustion Hazards in Aircraft Oxygen Systems

2023-08-23
CURRENT
AIR825/13
This guide is intended to promote safe designs, operations and maintenance on aircraft and ground support oxygen systems. This is also a summary of some work by the ASTM G 4 Committee related to oxygen fire investigations and design concerns to reduce the risk of an oxygen fire. There have been many recent technological advances and additional test data is available for evaluating and controlling combustion hazards in oxygen equipment. Standards that use this new information are rapidly evolving. A guide is needed to assist organizations and persons not completely familiar with this process to provide oxygen systems with minimum risks of combustion. This guide does not necessarily address all the detailed issues and provide all data that will be needed. For a complete analysis, supplemental publications need to be consulted. This guide does discuss the basics of oxygen systems fire hazards. The hazard analysis process is discussed and a simple example to explain this process.
Standard

Gaseous Oxygen and Oxygen Equipment, Introductory

2021-08-11
HISTORICAL
AIR825/3
This Aerospace Information Report provides a general discussion on gaseous breathing oxygen and oxygen equipment for use on commercial aircraft. Other types of oxygen systems are mentioned to assist in this discussion. For detailed information on systems other than gaseous, reference the appropriate section of AIR825.
Standard

Gaseous Oxygen and Oxygen Equipment, Introductory

2022-05-02
CURRENT
AIR825/3A
This SAE Aerospace Information Report provides a general discussion on gaseous breathing oxygen and oxygen equipment for use on commercial aircraft. Other types of oxygen systems are mentioned to assist in this discussion. For detailed information on systems other than gaseous, refer to the appropriate section of AIR825.
X