Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Computational Study of the Aerodynamics of a Realistic Car Model by Means of RANS and Hybrid RANS/LES Approaches

2014-04-01
2014-01-0594
The aerodynamic properties of a BMW car model, representing a 40%-scaled model of a relevant car configuration, are studied computationally by means of the Unsteady RANS (Reynolds-Averaged Navier-Stokes) and Hybrid RANS/LES (Large-Eddy Simulation) approaches. The reference database (geometry, operating parameters and surface pressure distribution) are adopted from an experimental investigation carried out in the wind tunnel of the BMW Group in Munich (Schrefl, 2008). The present computational study focuses on validation of some recently developed turbulence models for unsteady flow computations in conjunction with the universal wall treatment combining integration up to the wall and high Reynolds number wall functions in such complex flow situations. The turbulence model adopted in both Unsteady RANS and PANS (Partially-Averaged Navier Stokes) frameworks is the four-equation ζ − f formulation of Hanjalic et al. (2004) based on the Elliptic Relaxation Concept (Durbin, 1991).
Technical Paper

Eddy-resolving Simulations of the Notchback ‘DrivAer’ Model: Influence of Underbody Geometry and Wheels Rotation on Aerodynamic Behaviour

2016-04-05
2016-01-1602
The present work deals with a computational study of a ‘DrivAer’ car model, the rear-end shape of which corresponds to the Notchback configuration (Heft et al. [1] and Heft [2]). The study investigates the effects of the underbody geometry and wheel rotation on the aerodynamic performance. The configurations with detailed and smooth underbody as well as with stationary and rotating wheels are considered. The computational model applied relies on a VLES (Very Large Eddy Simulation) formulation, Chang et al. [3]. The residual turbulence related to the VLES framework is presently modelled by a RANS-based (Reynolds-Averaged Navier-Stokes), four-equation (D(k,ɛ,ζ, f)/Dt) near-wall eddy-viscosity model, Hanjalic et al. [4].
Technical Paper

EXTICE: EXTreme Icing Environement

2011-06-13
2011-38-0063
Recent aircraft incidents and accidents have highlighted the existence of icing cloud characteristics beyond the actual certification envelope defined by the JAR/FAR Appendix C, which accounts for an icing envelope comprising water droplets up to a diameter of 50 μm. The main concern is the presence of SLD (Supercooled Large Droplets), with droplet diameters well beyond 50 microns. In a previous European-funded project, EURICE, in-flight icing conditions and theoretical studies were performed to demonstrate the existence of SLD and to help characterize SLD clouds. Within the EXTICE project the problem of SLD simulation is addressed with both numerical and experimental tools is being addressed. In this paper the objectives and main achievements of the EXTICE project will be described.
Technical Paper

Scale-Resolving Simulation of an ‘On-Road’ Overtaking Maneuver Involving Model Vehicles

2018-04-03
2018-01-0706
Aerodynamic properties of a BMW car model taking over a truck model are studied computationally by applying the scale-resolving PANS (Partially-averaged Navier-Stokes) approach. Both vehicles represent down-scaled (1:2.5), geometrically-similar models of realistic vehicle configurations for which on-road measurements have been performed by Schrefl (2008). The operating conditions of the modelled ‘on-road’ overtaking maneuver are determined by applying the dynamic similarity concept in terms of Reynolds number consistency. The simulated vehicle configuration constitutes of a non-moving truck model and a car model moving against the air flow, the velocity of which corresponds to the car velocity.
Journal Article

MUSIC-haic: 3D Multidisciplinary Tools for the Simulation of In-Flight Icing due to High Altitude Ice Crystals

2019-06-10
2019-01-1962
Icing is a major hazard for aviation safety. Over the last decades an additional risk has been identified when flying in clouds with high concentrations of ice-crystals where ice accretion may occur on warm parts of the engine core, resulting in engine incidents such as loss of engine thrust, strong vibrations, blade damage, or even the inability to restart engines. Performing physical engine tests in icing wind tunnels is extremely challenging, therefore, the need for numerical simulation tools able to accurately predict ICI (Ice Crystal Icing) is urgent and paramount for the aeronautics industry, especially regarding the development of new generation engines (UHBR = Ultra High Bypass Ratio, CROR = Counter rotating Open Rotor, ATP = Advanced Turboprop) for which analysis methods largely based on previous engines experience may be less and less applicable. The European research project MUSIC-haic has been conceived to fill this gap and has started in September 2018.
Journal Article

Critical Assessment of Some Popular Scale-Resolving Turbulence Models for Vehicle Aerodynamics

2017-03-28
2017-01-1532
Some widely-used scale-resolving turbulence models are comparatively assessed in simulating the aerodynamic behavior of a full-scale AUDI-A1 car configuration. The presently considered hybrid RANS/LES (RANS – Reynolds-Averaged Navier-Stokes; LES – Large-Eddy Simulation) models include the well-known DDES (Delayed Detached-Eddy Simulation) scheme and two further variable-resolution formulations denoted by PANS (Partially-Averaged Navier-Stokes; Basara, 2011) and VLES (Very LES; Chang et al., 2014). Whereas the DDES method represents the originally proposed formulation based on the one-equation Spalart-Almaras model (Spalart et al. 2006), whose RANS/LES interface position is directly correlated to the underlying grid resolution, the other two models represent ‘true’ seamless formulations, providing a smooth transition from Unsteady RANS to LES in terms of a dynamic “resolution parameter” variation.
X