Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

A Monte Carlo Based Turbulent Flame Propagation Model for Predictive SI In-Cylinder Engine Simulations Employing Detailed Chemistry for Accurate Knock Prediction

2012-09-10
2012-01-1680
This paper reports on a turbulent flame propagation model combined with a zero-dimensional two-zone stochastic reactor model (SRM) for efficient predictive SI in-cylinder combustion calculations. The SRM is a probability density function based model utilizing detailed chemistry, which allows for accurate knock prediction. The new model makes it possible to - in addition - study the effects of fuel chemistry on flame propagation, yielding a predictive tool for efficient SI in-cylinder calculations with all benefits of detailed kinetics. The turbulent flame propagation model is based on a recent analytically derived formula by Kolla et al. It was simplified to better suit SI engine modelling, while retaining the features allowing for general application. Parameters which could be assumed constant for a large spectrum of situations were replaced with a small number of user parameters, for which assumed default values were found to provide a good fit to a range of cases.
Technical Paper

Studying HCCI Combustion and its Cyclic Variations Versus Heat Transfer, Mixing and Discretization using a PDF Based Approach

2009-04-20
2009-01-0667
The ability to predict cyclic variations is certainly useful in studying engine operating regimes, especially under unstable operating conditions where one single cycle may differ from another substantially and a single simulation may give rather misleading results. PDF based models such as Stochastic Reactor Models (SRM) are able to model cyclic variations, but these may be overpredicted if discretization is too coarse. The range of cyclic variations and the dependence of the ability to correctly assess their mean values on the number of cycles simulated were investigated. In most cases, the average values were assessed correctly on the basis of as few as 10 cycles, but assessing the complete range of cyclic variations could require a greater number of cycles. In studying average values, variations due too coarse discretization being employed are smaller than variations originating from changes in physical parameters, such as heat transfer and mixing parameters.
Technical Paper

Modeling Diesel Engine Combustion With Detailed Chemistry Using a Progress Variable Approach

2005-10-24
2005-01-3855
In this work, we present an unsteady flamelet progress variable approach for diesel engine CFD combustion modeling. The progress variable is based on sensible enthalpy integrated over the flamelet and describes the transient flamelet ignition process. By using an unsteady flamelet library for the progress variable, the impact of local effects, for example variations in the turbulence field, effects of wall heat transfer etc. on the autoignition chemistry can be considered on a cell level. The coupling between the unsteady flamelet library and the transport equation for total enthalpy follows the ideas of the representative interactive flamelet approach. Since the progress variable gives a direct description of the state in the flamelet, the method can be compared to having a flamelet in each computational cell in the CFD grid.
Technical Paper

Analysis of the Applicability of Water Injection in Combination with an eFuel for Knock Mitigation and Improved Engine Efficiency

2022-06-14
2022-37-0019
The development of future gasoline engines is dominated by the study of new technologies aimed at reducing the engine negative environmental impact and increase its thermal efficiency. One common trend is to develop smaller engines able to operate in stoichiometric conditions across the whole engine map for better efficiency, lower fuel consumption, and optimal conversion rate of the three-way catalyst (TWC). Water injection is one promising technique, as it significantly reduces the engine knock tendency and avoids fuel enrichment for exhaust temperature mitigation at high power operation. With the focus on reducing the carbon footprint of the automotive sector, another vital topic of research is the investigation of new alternative CO2-neutral fuels or so-called eFuels. Several studies have already shown how these new synthetic fuels can be produced by exploiting renewable energy sources and can significantly reduce engine emissions.
Technical Paper

Effect of Inhomogeneities in the End Gas Temperature Field on the Autoignition in SI Engines

2000-03-06
2000-01-0954
This paper reports an one–dimensional modeling procedure of the hot spot autoignition with a detailed chemistry and multi–species transport in the end gas in an SI engine. The governing equations for continuity of mass, momentum, energy and species for an one–dimensional, unsteady, compressible, laminar, reacting flow and thermal fields are discretized and solved by a fully implicit method. A chemical kinetic mechanism is used for the primary reference fuels n–heptane and iso–octane. This mechanism contains 510 chemical reactions and 75 species. The change of the cylinder pressure is calculated from both flame propagation and piston movement. The turbulent velocity of the propagating flame is modeled by the Wiebe function. Adiabatic conditions, calculated by minimizing Gibb's free energy at each time step, are assumed behind the flame front in the burned gas.
Journal Article

Analysis of the Water Addition Efficiency on Knock Suppression for Different Octane Ratings

2020-04-14
2020-01-0551
Water injection can be applied to spark ignited gasoline engines to increase the Knock Limit Spark Advance and improve the thermal efficiency. The Knock Limit Spark Advance potential of 6 °CA to 11 °CA is shown by many research groups for EN228 gasoline fuel using experimental and simulation methods. The influence of water is multi-layered since it reduces the in-cylinder temperature by vaporization and higher heat capacity of the fresh gas, it changes the chemical equilibrium in the end gas and increases the ignition delay and decreases the laminar flame speed. The aim of this work is to extend the analysis of water addition to different octane ratings. The simulation method used for the analysis consists of a detailed reaction scheme for gasoline fuels, the Quasi-Dimensional Stochastic Reactor Model and the Detonation Diagram. The detailed reaction scheme is used to create the dual fuel laminar flame speed and combustion chemistry look-up tables.
X