Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Physics Based Contact Fatigue Analysis of Vehicle Powertrain Gears

2002-11-18
2002-01-3132
Contact fatigue is a major concern on the durability of vehicle powertrain gear design. Having an effective method for gear life trend prediction will prevent over design of the powertrain gears and assure the quality of the products. The ANSI/AGMA Standard on gear contact fatigue life calculation is based on an empirical model developed from experiment data fitting. A similar approach widely used in the industry uses measured component SN curves for correspondence between loads and life cycles [1]. This method is simple. But important physical parameters such as material, lubricant, and manufacturing factors are not included in the model, therefore, the model cannot to be used for design optimization. Although some analytical models are available for the gear life prediction, they have not been accepted by the industry. On the one hand, most theoretical models are too complicated for applications.
Technical Paper

Considerations in Conducting Structural Dynamic Analysis of Commercial Vehicle Exhaust System

2006-10-31
2006-01-3573
To validate the integrity of a commercial vehicle's exhaust system's structural design is a challenging job. An integrated approach to use both simulation/modeling and hardware testing must be employed to reduce product development cost. In addition to the considerations of the geometry and configuration specs of 70-90 parts and joints as well as material's thermal and mechanical property data in model development, representative loading must be used. For base excitation type of loading, such as the one experienced by the vehicle's exhaust system, one must decide whether to conduct the time domain transient analysis or frequency domain random vibration analysis. Although both methods are well known, few discussions can be found in the literature regarding their effective use in the framework of product design and development. Based on our study, the random vibration method should be used first for identifying high stress locations in the system and for design optimization.
Technical Paper

An Evaluation of Friction Effects on Hypoid Gear Life and Bearing Load

2000-09-11
2000-01-2626
Premature parts breakdown in the final drive of heavy vehicle powertrains in vehicles equipped with high power retarders leads one to believe that the coasting mode gear forces may be higher than anticipated. There is limited experimental data that supports this hypothesis in the observation of high bearing load and gear bending stress in coast mode. However, without an in-depth analysis, it is unclear exactly how the high load is generated. There are several suggested causes: friction, gear geometry, and system compliance. The present study focuses on the effects of hypoid gear friction on the powertrain. Analytical expressions of the gear friction vector as a function of gear pressure, pitch and spiral angles, spiral hand and directions of rotation and applied torque were derived and examined. Attempts were made to correlate test-measured quantities and results from analytical models with and without the consideration of gear friction.
Technical Paper

Analytical Definition and Application of Straight Bevel Gear Tooth Form

1999-11-15
1999-01-3745
Although the methodology of straight bevel gear tooth form generation has been known for quite some time, few references are available in the literature. Presented in this paper are the general numerical procedures of spherical involute and octoid tooth form generations. We have proven that a tooth form generated from the latter approach, by simulating the rotation of a crown gear, matches exactly with the one from the former approach of unwraping a wire from a base circle. The advantage of using general numerical procedures rather than closed form equations is the flexibility of generating both standard and modified gear tooth profiles. In making the forging die, the gear tooth form must be developed with considerations of both the theoretical optimal geometry, and the dimensional compensation for heat treatment distortion.
X