Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Design of Planetary Two-Phase Thermal Control Systems, Using Experimental Data of Terrestrial Model Systems, Built According to Thermal-Gravitational Modelling and Scaling Laws

2007-07-09
2007-01-3242
Advanced thermal management systems are one of the key technologies needed for future applications within the framework of the NASA Authorization Act 2005. This Act specifies that a programme shall be established to develop a sustained human presence on the Moon, including a robust pre-curser programme to promote exploration, science, commerce and US pre-eminence in space, and as a stepping stone to future exploration of Mars and other destinations. This paper will elucidate the development of two-phase thermal management systems for Moon and Mars applications, using data obtained from experiments with terrestrial scale-model systems, built according to the thermal-gravitational modelling and scaling laws (derived from dimension-analytical similarity considerations). It will include also important supporting issues, like the compilation of flow pattern maps at various gravity levels and writing down the constitutive heat and mass transfer equations for these maps.
Technical Paper

On Thermal-Gravitational Modelling, Scaling and Flow Pattern Mapping Issues of Two-Phase Heat Transport Systems

1998-07-13
981692
The paper deals with heat and mass transfer research issues related to the development of spacecraft active thermal control systems, more specifically development of two-phase heat transport system technology. It focuses on design and development supporting theoretical work: the thermal/gravitational scaling of two-phase heat transport systems, including the aspects of gravity level dependent two-phase flow pattern mapping and condensation.
Technical Paper

Two-Phase Thermal Control for Planetary Base and Surface Systems Applications: A Critical Review of Some Research Issues to be Investigated

2008-06-29
2008-01-2006
Discussed are some critical theoretical and experimental research issues to be investigated for candidate two-phase thermal control systems (and their components), to define what is to be done to develop reliable systems, for near and far future planetary applications envisaged. An earlier publication SAE-2007-01-3242 (“Design of planetary two-phase thermal control systems, using experimental data of terrestrial model systems, built according to thermal-gravitational modelling and scaling laws”), discussed that such advanced thermal control systems are one of the key technologies needed for future applications within the framework of the NASA Authorization Act 2005. This act specifies a programme to be established to develop sustained human presence on the Moon, including a robust pre-curser programme to promote exploration, science, commerce and US preeminence in space, also as a stepping stone to future exploration of Mars and other planetary destinations.
Technical Paper

Sensors and Components for Aerospace Thermal Control and Propellant Systems

1997-07-01
972478
Various aspects of different sensors and components, (being) developed or fine-tuned for aerospace thermal control and propellant systems, are discussed, i.e.: rotatable radial heat pipe joints, vapour quality sensors, controllable valves, condensers, flow metering assemblies and propellant gauges.
Technical Paper

In-Orbit Demonstration of Two Phase Heat Transport Technology Status of TPX II:Reflight of the European Two-Phase Experiment

1997-07-01
972479
In order to demonstrate two-phase heat transport system technology in orbit, the Dutch-Belgian Two-Phase eXperiment TPX was successfully flown as Get Away Special G557, aboard STS60, February 1994. Based on TPX conclusions and lessons learned, a reflight experiment TPX II is being developed in order to usefully fill the time gap between TPX and possible future full-scale Capillary Pumped Loop flights. The characteristics of TPX II, intended to fly early 1998, are discussed in detail: configuration and component changes, updates of objectives/scenario, current status, results of pre-launch (components) testing and outlook.
Technical Paper

Current Mechanically Pumped Two-Phase Thermal Control Loop Developments

2004-07-19
2004-01-2507
After a general introduction on two-phase thermal control system issues, the paper reviews the status of and lists commonalities and differences between the only two currently developed aerospace-related mechanically pumped two-phase thermal control systems. These are the Russian Segment Active Thermal Control System (RSATCS) hybrid two-phase ammonia thermal control system for the Russian segment of the International Space Station ISS, and the Tracker Thermal Control System (TTCS) hybrid two-phase carbon dioxide thermal control loop for the AMS-2 attached ISS payload.
Technical Paper

Moveable Thermal Joints for Deployable or Steerable Spacecraft Radiator Systems

1987-07-01
871460
A possible solution to handle the heat dissipated by the batteries of the Columbus Polar Platform is to equip each battery ORU (Orbital Replacement Unit) with a dedicated heat pipe radiator. Such a radiator, being stowed during launch, has to be deployed in orbit and might be chosen to be steerable to achieve maximum radiator performance, hence minimum radiator size. In such radiator systems the coupling between battery and deployable or steerable radiator has to incorporate a rotatable or flexible thermal joint. Drivers for the design of such joints are a low thermal resistance, hence a limited temperature drop across the joint to optimize radiator size, and a small deployment/retraction torque or steering torque. Different concepts for moveable thermal joints are described and quantitatively discussed.
Technical Paper

Thermal-Gravitational Modelling and Scaling of Heat Transport Systems for Applications in Different Gravity Environments: Super-Gravity Levels & Oscillating Heat Transfer Devices

2000-07-10
2000-01-2377
Several publications describe research carried out at NLR on the thermal-gravitational modelling and scaling of two-phase heat transport systems for spacecraft applications. They dealt with mechanically and capillary pumped two-phase loops. The activities pertained to pure geometric, pure fluid to fluid, or hybrid scaling between a prototype system and a model at the same gravity level, and between a prototype in micro-gravity and a model on earth. Recent publications also include the scaling aspects of a prototype loop for a Moon or Mars base application and a terrestrial model. The work discussed here was carried out in the last couple of years. It concerns scaling to super-gravity levels, and was done because a promising super-gravity application for (two-phase) heat transport systems can be the cooling of high power electronics in spinning satellites and in military aircraft.
Technical Paper

Development of Liquid Flow Metering Assemblies for Space

1999-07-12
1999-01-1981
As it is not possible to directly use commercial liquid flow meters in spacecraft fluid loops, a study was carried out for the European Space Agency to adapt commercial flow meter assemblies for space applications. The various activities (described in detail) eventually led to the selection of two commercial units, which were redesigned/adapted to be used in spacecraft single-phase (water) and two-phase (ammonia) thermal control loops. These flow meter assemblies were tested according to an agreed test programme, that included performance and calibration tests in a test bench (developed during the study), vibration testing and EMC/EMI testing. The results are discussed in order to assess to what extent the study objectives were met. Recommendations for future work are given also.
X