Refine Your Search

Topic

Author

Search Results

Technical Paper

Stratification of Swirl Intensity in the Axial Direction for Control of Turbulence Generation During the Compression Stroke

1991-02-01
910261
Control of turbulence during the compression stroke is suggested by both theoretical calculations and experimental results obtained with an LDV measurement in a motored engine. The authors have found experimentally that when an axial distribution of swirl intensity exists, a large-scale annular vortex is formed inside the cylinder during the compression stroke and this vortex generates and transports turbulence energy. A numerical calculation is adopted to elucidate this phenomenon. Then, an axial stratification of swirl intensity is found to generate a large-scale annular vortex during the compression stroke by an interaction between the piston motion and the axial pressure gradient. The initial swirl profile is parametrically varied to assess its effect on the turbulence parameters. Among calculated results, turbulence energy is enhanced strongest when the swirl intensity is highest at the piston top surface and lowest at the bottom surface of the cylinder head.
Technical Paper

High Temperature Diesel Combustion in a Rapid Compression-Expansion Machine

1991-09-01
911845
According to previous papers on the combustion process in LHR diesel engines the combustion seems to deteriorate in LHR diesel engines. However it has been unclear whether this was caused by the high temperature gas or high temperature combustion chamber walls. This study was intended to investigate the effect of gas temperature on the rate of heat release through the heat release analysis and other measurements using a rapid compression-expansion machine. Experiments conducted at high gas temperatures which was achieved by the employment of oxygen-argon-helium mixture made it clear that the combustion at a high gas temperature condition deteriorated actually and this was probably due to the poorer mixing rate because of the increase in gas viscosity at a high gas temperature condition.
Technical Paper

Comprehensive Characterization of Particulate Emissions from Advanced Diesel Combustion

2007-07-23
2007-01-1945
The applicability of several popular diesel particulate matter (PM) measurement techniques to low temperature combustion is examined. The instruments' performance in measuring low levels of PM from advanced diesel combustion is evaluated. Preliminary emissions optimization of a high-speed light-duty diesel engine was performed for two conventional and two advanced low temperature combustion engine cases. A low PM (<0.2 g/kg_fuel) and NOx (<0.07 g/kg_fuel) advanced low temperature combustion (LTC) condition with high levels of exhaust gas recirculation (EGR) and early injection timing was chosen as a baseline. The three other cases were selected by varying engine load, injection timing, injection pressure, and EGR mass fraction. All engine conditions were run with ultra-low sulfur diesel fuel. An extensive characterization of PM from these engine operating conditions is presented.
Technical Paper

Combustion and Emission Characteristics of Multiple Stage Diesel Combustion

1998-02-23
980505
A new diesel combustion concept termed MULDIC (MUL-tiple stage DIesel Combustion), which can reduce NOx emissions at high load conditions, was studied by means of engine tests, combustion observation, and numerical simulation. In MULDIC, the first stage combustion corresponds to premixed lean combustion, and the second stage combustion corresponds to diffusion combustion under high temperature and low oxygen conditions. The engine tests showed that simultaneous reduction of NOx and smoke could be obtained with MULDIC operation, even at an excess air ratio of 1.4. Fuel consumption was higher compared to conventional operation because of premature ignition of the first stage combustion and extremely late second stage injection. However, optimization of the first stage combustion increased the degree of constant volume combustion, and hence the thermal efficiency was increased.
Technical Paper

A Numerical Simulation of Ignition Delay in Diesel Engines

1998-02-23
980501
To investigate the ignition process in a diesel spray, the ignition in a transient fuel spray is analyzed numerically by a simple quasi-steady spray model coupled with the Shell kinetics model at various operating conditions and validity of this model is assessed by a comparison with existing experimental data. The calculated results indicate that the competition between the heat absorption of fuel and the hot air entrainment determines the equivalence ratio of mixtures favorable for the ignition to occur in the shortest time.
Technical Paper

A Study on Surrounding Air Flow Induced by Diesel Sprays

1998-02-23
980805
A study of the mixing mechanism of fuel with surrounding air is necessary in order to clarify the combustion process. In this study, the flow field near non-evaporating diesel spray as well as spray surface were observed and analyzed using a Nd-YAG laser light sheet. A single shot fuel spray was injected into a high pressure vessel and photographed under double-pulse laser illumination. The images of dispersed particles in the vessel were processed and velocity vectors were obtained by the auto-correlation method. Measured results showed temporal variation in the air movement around the spray. Just after the start of injection, air near the nozzle was pushed outward by the spray tip, after which the flow direction reversed. The air velocity ahead of spray tip was very low compared to fuel spray tip velocity. At a stable injection condition, air near the nozzle tip was pulled by the spray movement and flowed uniformly, and the spray-air boundary was smooth.
Technical Paper

Measurement of the Rate of Multiple Fuel Injection with Diesel Fuel and DME

2001-03-05
2001-01-0527
The accuracy of the injection rate meter based on W. Zeuch's method in the measurement of multiple injection rate and amount was calibrated using a small cam driven piston that is driven by an electric motor. For the pre- or early-injection, a sensor with a high sensitivity can be applied to measure the small pressure increase due to the small injection amount. In case of the multiple injection that has the post and/or late injection, a pressure sensor with a low sensitivity must cover not only the large pressure increase due to the main injection but also the small pressure increase due to the post and/or late injection because the output of the high sensitivity sensor is saturated after the main injection. So the linearity of the low sensitivity pressure sensor was calibrated with the cam driven piston prior to the experiment with the actual injection system.
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
Technical Paper

2-D Soot Visualization in Unsteady Spray Flame by means of Laser Sheet Scattering Technique

1991-02-01
910223
The two-dimensional distribution of a soot cloud in an unsteady spray flame in a rapid compression machine(RCM) was visualized using the laser sheet scattering technique. A 40 mm x 50 mm cross section on the flame axis was illuminated by a thin laser sheet from a single pulsed Nd:YAG laser(wavelength 532 nm). Scattered light from soot particles was taken by a CCD camera via a high speed gated image intensifier. The temporal variation of the scattered light images were presented with the injection pressure as a parameter. The results showed that scattered light was intense near the periphery of the flame tip and that the scattered light becomes weaker significantly and disappears fast after the end of injection as injection pressure is increased. This technique was also applied to the visualization of the two-dimensional distribution of liquid droplets in the non-evaporating spray to correlate it with the soot concentration distribution.
Technical Paper

The Effect of Injection Parameters and Swirl on Diesel Combustion with High Pressure Fuel Injection

1991-02-01
910489
This paper reports on research works of ACE towards the most appropriate injection and combustion system for heavy-duty direct injection diesel engines. Selected items for the study are the effect of nozzle hole diameter, injection rate pattern, swirl ratio, and supercharging under high pressure fuel injection. According to those experimental results, the combination of over 150MPa injection pressure with controlled injection rate, smaller nozzle hole diameter, and quiescent combustion systems shows the best performance and emission. The mechanisms of the combustion improvement are discussed from the turbulent mixing viewpoint, including the results of combustion observation.
Technical Paper

“Catalytic Engine” NOx Reduction of Diesel Engines with New Concept Onboard Ammonia Synthesis System

1992-02-01
920469
Ammonia is one of the most useful compounds that react with NOx selectively on a catalyst, such as V2O5-TiO2, under oxygen containing exhaust gas. However ammonia cannot be stored because of its toxicity for the small power generator in populated areas or for the diesel vehicles. A new concept for NOx reduction in diesel engine using ammonia is introduced. This system is constructed from the hydrogen generator by fuel reformer, the ammonia synthesizer, SCR catalyst for NOx reduction and the gas injection system of reformed gas into the cylinder. Experimental results show that, the SCR catalyst provides a very high rate of NOx reduction, reformed gas injection into cylinder is very effective for particulate reduction. WHEN CONSIDERING INTERNAL COMBUSTION ENGINES of the 1990's the question of how to harmonize the engine with the natural environments is one of the greatest problems. The internal combustion engine changes a substance into energy via its explosive combustion.
Technical Paper

NOx Reduction from Diesel Combustion Using Pilot Injection with High Pressure Fuel Injection

1992-02-01
920461
Several methods to reduce ignition delay period were tested in combination with a high pressure injection and effects on combustion improvement were examined. It was found that the reduction of ignition delay does not give so much improvement at the usual injection timing before TDC, but when the injection timing is considerably retarded or when the original ignition delay is relatively long, shortening of the ignition delay is effective to reduce pre-mixed combustion and NOx emission. Further, assuming the combustion system which conforms to the 1983 Japanese regulation as the reference system, it was found that the combination of pilot injection and high injection pressure, simultaneously reduces NOx by approximately 35% and smoke by 60-80% without worsening the fuel economy.
Technical Paper

A Study on Precise Measurement of Diesel Fuel Injection Rate

1992-02-01
920630
An experimental evaluation of the reliability of the Zeuch's method was carried out. The following were derived: 1) cavitation limits the minimum back pressure available; 2) the injection rate measured by the Zeuch's method agrees with that by the W.Bosch's method; 3) the effect of dynamic pressure of the injected fuel jet has a negligible effect on the pressure sensor which is attached to the chamber wall; and 4) the high-frequency noise after the end of injection observed in the Zeuch's measurement can be effectively removed by either a low-pass filter or an inverse Fourier transform processing.
Technical Paper

Stochastic Model for Diesel Combustion Considering Some Turbulent Mixing Zones

1992-02-01
920693
A new model to describe diesel combustion process has been developed. In this model diesel combustion field is divided into two zones, premixing and combustion. Turbulent mixing process is described by the stochastic approach in each zone separately. Comparison of calculations with experimental results showed that this model can predict the entire course of heat release and nitrogen-oxide formation precisely, under wide-spread conditions. Two-dimensional flame temperature distributions in the combustion field by the two color method were compared with simulation results. Both the measured and the calculated flame temperature distributions showed good agreements with each other. In the diesel combustion process, the injected fuel mixes with air entrained inside the spray. The mixture is thus formed, and ignites at several points. Random expansion of flamelets accelerates both mixing and combustion. Following this, fairly moderate diffusion combustion proceeds.
Technical Paper

Measurement of Flame Temperature Distribution in D.I. Diesel Engine with High Pressure Fuel Injection

1992-02-01
920692
Two dimensional flame temperature distributions in D.I. diesel engine with high pressure fuel injection were measured by the image analysis of high speed photographs based on two color method. Effects of injection pressure and nozzle hole diameter on flame temperature distribution were examined. The flame temperature in the case of high pressure injection is higher than that in low injection pressure. The higher flame temperature in high pressure injection results from the rapid compression of burned gases. The KL value which is an index of soot density in the combustion chamber decreases as injection pressure increases. The higher oxidation rate of soot at the later period of combustion may contribute to a soot reduction in the case of high pressure injection.
Technical Paper

A Study of the Structure of Diesel Sprays Using 2-D Imaging Techniques

1992-02-01
920107
The structure of dense sprays was investigated using 2-D imaging techniques. To investigate the mechanism of atomization, the liquid phase in a non-evaporating spray was visualized by a thin laser sheet formed by a single pulse from a Nd:YAG laser at the distance from 4 to 19 mm from the nozzle orifice with the injection pressure and the surrounding gas density as parameters. A new technique for the visualization of vapor phase in an evaporating spray, the SSI (Silicone particle Scattering Imaging) method, was proposed to investigate the structure of the vapor phase regions of the spray.
Technical Paper

A Study on Soot Formation in Unsteady Spray Flames via 2-D Soot Imaging

1992-02-01
920114
The formation and oxidation processes of soot particles in unsteady spray flames were investigated in a quiescent atmosphere using 2-D laser sheet visualization. The mid-plane of a flame was illuminated twice during a short time-interval by a laser sheet from a double-pulsed YAG laser. An image pair of the scattered light from soot particles was taken by two intensified gated cameras in succession. The velocity vectors of soot clouds at various location in the sooting region were estimated using the spatial correlation between the image pair. The results of temporal and spatial variation of velocity and scattering intensity in the evolving soot clusters made it clear that soot is mainly formed in the periphery of the flame tip where the air entrainment is less and flame temperature favors soot formation.
Technical Paper

Observation of High Pressure Fuel Spray with Laser Light Sheet Method

1992-02-01
920459
To clarify the detailed structure of high pressure fuel spray, 2-D sectional images of non-evaporating fuel sprays in a high pressure vessel were observed by using the laser light sheet of a copper vapor laser. By this system, many sectional and continuous photographs of the same spray were obtained, and were very effective for the detailed observation of the spray inner structure and its developing process. The spray inner structure was very complicated, and its fuel density distribution was very heterogeneous. And for its developing process, the spray advances straight immediately after injected, then meanders, and deforms into a branch-like structure. Advancing downstream, these branches distribute complicatedly and heterogeneously with low density droplets. The heterogeneity is owing to these branches. And, the developing process is divided into four regions. Further, the effects of some parameters on this process were investigated.
Technical Paper

The Shock Wave Generation Around the Diesel Fuel Spray with High Pressure Injection

1992-02-01
920460
It is well known that increasing the fuel injection pressure is effective for improving the diesel engine combustion. While studying the characteristics of the high pressure fuel spray which is injected in a high pressure vessel, the authors found weak shock waves generating around the fuel spray. To investigate the shock waves effect on the fuel spray the authors measured the propagation speed and pressure amplitude as functions of the injection pressure and ambient pressure. The results indicate that shock waves are generated when the fuel injection speed exceeds the ambient sonic speed. Also it was found that the pressure amplitude of shock wave is approximately 10 % of the ambient pressure and the shock waves spread at a sonic speed. The above results make us think that, isn't it possible to use shock waves for combustion improvement.
Technical Paper

A Two-Zone Model Analysis of Heat Release Rate in Diesel Engines

1997-10-01
972959
A thermodynamic two-zone model which assumes a stoichiornetric burned gas region and unburned air region is presented in an attempt to calculate more precise rate of heat release of diesel combustion. A comparison is made of the rate of heat release obtained by the two-zone model with that obtained by the conventional single-zone model. It shows around 10 % increase in the rate of heat release with the two-zone model. The effect of state equation of gas is also examined with the single-zone model and the use of a real gas law in stead of the perfect gas law is found to yield minor difference in the rate of heat release at a high boost operating condition.
X